73 research outputs found
Long-Term Dynamics of the Kidney Disease Epidemic Among HIV-Infected Individuals
One of many risks facing HIV+ individuals is the development of kidney dysfunction and end stage kidney disease (ESKD). A differential equation-based mathematical model was developed to assess the impact of antiretroviral therapy on the progression to kidney disease and on reducing mortality due to kidney failure. Analytical and numerical predictions of long-term HIV+ ESKD prevalence show that therapy can lead to either extremely low levels of disease prevalence or increased prevalence, depending on drug efficacy levels and mechanisms of action. Maintenance of HIV+ ESKD prevalence below one individual is possible with sufficient efficacy (e.g., 99%) against the progression from AIDS to HIV+ ESKD and against entry to the AIDS population, when the reduction in mortality in the AIDS and HIV+ ESKD populations is modest (e.g., 10%). However, the concomitant decrease in mortality in the AIDS and HIV+ ESKD populations due to therapy is predicted to sustain greater disease prevalence
Identity centrality and psychosocial functioning : a person-centered approach
There has been increased recognition that identity operates within several “components” and that not every component is likely to be equally central to one’s sense of self. The aim of the current study was to determine the extent to which identity components (i.e., personal, relational, collective, and public) are differentially central to emerging adults’ identity. We used a two-step cluster analytic procedure to identify distinct clusters and determine how these configurations might differ in relation to psychosocial functioning (i.e., well-being, externalizing and internalizing symptoms, illicit drug use, risky sex, and impaired driving). The sample consisted of 8,309 college students (72.8% female; M age = 19.94 years, 18–29, SD = 2.01) from 30 U.S. colleges and universities. Analyses identified six unique clusters based on the centrality of the four identity components. The findings indicated that a more well-rounded identity was associated with the most favorable psychosocial functioning. Results are discussed in terms of important directions for identity research and practical implications
DNA methylation GrimAge version 2
We previously described a DNA methylation (DNAm) based biomarker of human mortality risk DNAm GrimAge. Here we describe version 2 of GrimAge (trained on individuals aged between 40 and 92) which leverages two new DNAm based estimators of (log transformed) plasma proteins: high sensitivity C-reactive protein (logCRP) and hemoglobin A1C (logA1C). We evaluate GrimAge2 in 13,399 blood samples across nine study cohorts. After adjustment for age and sex, GrimAge2 outperforms GrimAge in predicting mortality across multiple racial/ethnic groups (meta P=3.6x10-167 versus P=2.6x10-144) and in terms of associations with age related conditions such as coronary heart disease, lung function measurement FEV1 (correlation= -0.31, P=1.1x10-136), computed tomography based measurements of fatty liver disease. We present evidence that GrimAge version 2 also applies to younger individuals and to saliva samples where it tracks markers of metabolic syndrome. DNAm logCRP is positively correlated with morbidity count (P=1.3x10-54). DNAm logA1C is highly associated with type 2 diabetes (P=5.8x10-155). DNAm PAI-1 outperforms the other age-adjusted DNAm biomarkers including GrimAge2 in correlating with triglyceride (cor=0.34, P=9.6x10-267) and visceral fat (cor=0.41, P=4.7x10-41). Overall, we demonstrate that GrimAge version 2 is an attractive epigenetic biomarker of human mortality and morbidity risk
Meaning in life in emerging adulthood: a person-oriented approach
The present study investigated naturally occurring profiles based on two dimensions of meaning in life: Presence of Meaning and Search for Meaning. Cluster analysis was used to examine meaning-in-life profiles, and subsequent analyses identified different patterns in psychosocial functioning for each profile. A sample of 8,492 American emerging adults (72.5% women) from 30 colleges and universities completed measures on meaning in life, and positive and negative psychosocial functioning. Results provided support for five meaningful yet distinguishable profiles. A strong generalizability of the cluster solution was found across age, and partial generalizability was found across gender and ethnicity. Furthermore, the five profiles showed specific patterns in relation to positive and negative psychosocial functioning. Specifically, respondents with profiles high on Presence of Meaning showed the most adaptive psychosocial functioning, whereas respondents with profiles where meaning was largely absent showed maladaptive psychosocial functioning. The present study provided additional evidence for prior research concerning the complex relationship between Presence of Meaning and Search for Meaning, and their relation with psychosocial functioning. Our results offer a partial clarification of the nature of the Search for Meaning process by distinguishing between adaptive and maladaptive searching for meaning in life
Integrative Genetic Analysis of Allergic Inflammation in the Murine Lung
Airway allergen exposure induces inflammation among individuals with atopy that is characterized by altered airway gene expression, elevated levels of T helper type 2 cytokines, mucus hypersecretion, and airflow obstruction. To identify the genetic determinants of the airway allergen response, we employed a systems genetics approach. We applied a house dust mite mouse model of allergic airway disease to 151 incipient lines of the Collaborative Cross, a new mouse genetic reference population, and measured serum IgE, airway eosinophilia, and gene expression in the lung. Allergen-induced serum IgE and airway eosinophilia were not correlated. We detected quantitative trait loci (QTL) for airway eosinophilia on chromosome (Chr) 11 (71.802–87.098 megabases [Mb]) and allergen-induced IgE on Chr 4 (13.950–31.660 Mb). More than 4,500 genes expressed in the lung had gene expression QTL (eQTL), the majority of which were located near the gene itself. However, we also detected approximately 1,700 trans-eQTL, and many of these trans-eQTL clustered into two regions on Chr 2. We show that one of these loci (at 147.6 Mb) is associated with the expression of more than 100 genes, and, using bioinformatics resources, fine-map this locus to a 53 kb-long interval. We also use the gene expression and eQTL data to identify a candidate gene, Tlcd2, for the eosinophil QTL. Our results demonstrate that hallmark allergic airway disease phenotypes are associated with distinct genetic loci on Chrs 4 and 11, and that gene expression in the allergically inflamed lung is controlled by both cis and trans regulatory factors
Recommended from our members
Short‐Term Exposure to Air Pollution and Biomarkers of Oxidative Stress: The Framingham Heart Study
Background: Short‐term exposure to elevated air pollution has been associated with higher risk of acute cardiovascular diseases, with systemic oxidative stress induced by air pollution hypothesized as an important underlying mechanism. However, few community‐based studies have assessed this association. Methods and Results: Two thousand thirty‐five Framingham Offspring Cohort participants living within 50 km of the Harvard Boston Supersite who were not current smokers were included. We assessed circulating biomarkers of oxidative stress including blood myeloperoxidase at the seventh examination (1998–2001) and urinary creatinine‐indexed 8‐epi‐prostaglandin F2α (8‐epi‐PGF 2α) at the seventh and eighth (2005–2008) examinations. We measured fine particulate matter (PM 2.5), black carbon, sulfate, nitrogen oxides, and ozone at the Supersite and calculated 1‐, 2‐, 3‐, 5‐, and 7‐day moving averages of each pollutant. Measured myeloperoxidase and 8‐epi‐PGF 2α were loge transformed. We used linear regression models and linear mixed‐effects models with random intercepts for myeloperoxidase and indexed 8‐epi‐PGF 2α, respectively. Models were adjusted for demographic variables, individual‐ and area‐level measures of socioeconomic position, clinical and lifestyle factors, weather, and temporal trend. We found positive associations of PM 2.5 and black carbon with myeloperoxidase across multiple moving averages. Additionally, 2‐ to 7‐day moving averages of PM 2.5 and sulfate were consistently positively associated with 8‐epi‐PGF 2α. Stronger positive associations of black carbon and sulfate with myeloperoxidase were observed among participants with diabetes than in those without. Conclusions: Our community‐based investigation supports an association of select markers of ambient air pollution with circulating biomarkers of oxidative stress
Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files.
This article is open access.Fibrotic idiopathic interstitial pneumonias (fIIP) are a group of fatal lung diseases with largely unknown etiology and without definitive treatment other than lung transplant to prolong life. There is strong evidence for the importance of both rare and common genetic risk alleles in familial and sporadic disease. We have previously used genome-wide single nucleotide polymorphism data to identify 10 risk loci for fIIP. Here we extend that work to imputed genome-wide genotypes and conduct new RNA sequencing studies of lung tissue to identify and characterize new fIIP risk loci.We performed genome-wide genotype imputation association analyses in 1616 non-Hispanic white (NHW) cases and 4683 NHW controls followed by validation and replication (878 cases, 2017 controls) genotyping and targeted gene expression in lung tissue. Following meta-analysis of the discovery and replication populations, we identified a novel fIIP locus in the HLA region of chromosome 6 (rs7887 P meta = 3.7 × 10(-09)). Imputation of classic HLA alleles identified two in high linkage disequilibrium that are associated with fIIP (DRB1*15:01 P = 1.3 × 10(-7) and DQB1*06:02 P = 6.1 × 10(-8)). Targeted RNA-sequencing of the HLA locus identified 21 genes differentially expressed between fibrotic and control lung tissue (Q < 0.001), many of which are involved in immune and inflammatory response regulation. In addition, the putative risk alleles, DRB1*15:01 and DQB1*06:02, are associated with expression of the DQB1 gene among fIIP cases (Q < 1 × 10(-16)).We have identified a genome-wide significant association between the HLA region and fIIP. Two HLA alleles are associated with fIIP and affect expression of HLA genes in lung tissue, indicating that the potential genetic risk due to HLA alleles may involve gene regulation in addition to altered protein structure. These studies reveal the importance of the HLA region for risk of fIIP and a basis for the potential etiologic role of auto-immunity in fIIP.National Heart, Lung and Blood Institute
R01-HL095393
R01-HL097163
P01-HL092870
RC2-HL101715
U01-HL089897
U01-HL089856
U01-HL108642
P50-HL089493
A Quasi-Steady-State Approximation to the Basic Target-Cell-Limited Viral Dynamics Model with a Non-Cytopathic Effect
Analysis of previously published target-cell limited viral dynamic models for pathogens such as HIV, hepatitis, and influenza generally rely on standard techniques from dynamical systems theory or numerical simulation. We use a quasi-steady-state approximation to derive an analytic solution for the model with a non-cytopathic effect, that is, when the death rates of uninfected and infected cells are equal. The analytic solution provides time evolution values of all three compartments of uninfected cells, infected cells, and virus. Results are compared with numerical simulation using clinical data for equine infectious anemia virus, a retrovirus closely related to HIV, and the utility of the analytic solution is discussed
Identifying the Conditions Under Which Antibodies Protect Against Infection by Equine Infectious Anemia Virus
The ability to predict the conditions under which antibodies protect against viral infection would transform our approach to vaccine development. A more complete understanding is needed of antibody protection against lentivirus infection, as well as the role of mutation in resistance to an antibody vaccine. Recently, an example of antibody-mediated vaccine protection has been shown via passive transfer of neutralizing antibodies before equine infectious anemia virus (EIAV) infection of horses with severe combined immunodeficiency (SCID). Viral dynamic modeling of antibody protection from EIAV infection in SCID horses may lead to insights into the mechanisms of control of infection by antibody vaccination. In this work, such a model is constructed in conjunction with data from EIAV infection of SCID horses to gain insights into multiple strain competition in the presence of antibody control. Conditions are determined under which wild-type infection is eradicated with the antibody vaccine. In addition, a three-strain competition model is considered in which a second mutant strain may coexist with the first mutant strain. The conditions that permit viral escape by the mutant strains are determined, as are the effects of variation in the model parameters. This work extends the current understanding of competition and antibody control in lentiviral infection, which may provide insights into the development of vaccines that stimulate the immune system to control infection effectively
- …