7,850 research outputs found
Hadronic Freeze-Out in A+A Collisions meets the Lattice QCD Parton-Hadron Transition Line
We analyze hadrochemical freeze-out in central Pb+Pb collisions at CERN SPS
and LHC energies. Employing the UrQMD hybrid transport model we study the
effects of the final hadron/resonance expansion phase on the hadron
multiplicities established at hadronization. The bulk meson yields freeze out
directly at hadronization whereas the baryon-antibaryon sector is subject to
significant alterations, due to annihilation and regeneration processes. We
quantify the latter changes by survival factors for each species which are
applied to modify the statistical model predictions for the data. The modified
SM analysis recovers the hadronization points, which coincide with the recent
lattice QCD predictions of the parton-hadron transition line at finite
baryochemical potential.Comment: Proceedings of the 8th International Workshop on Critical Point and
Onset of Deconfinement, March 11 to 15, 2013 Napa, California, US
Imaging of Thermal Domains in ultrathin NbN films for Hot Electron Bolometers
We present low-temperature scanning electron microscopy (LTSEM)
investigations of superconducting microbridges made from ultrathin NbN films as
used for hot electron bolometers. LTSEM probes the thermal structure within the
microbridges under various dc current bias conditions, either via
electron-beam-induced generation of an unstable hotspot, or via the
beam-induced growth of a stable hotspot. Such measurements reveal
inhomogeneities on a micron scale, which may be due to spatial variations in
the NbN film or film-interface properties. Comparison with model calculations
for the stable hotspot regime confirm the basic features of common hot spot
models.Comment: 3 pages, 3 figure
Validity of the Hadronic Freeze-Out Curve
We analyze hadro-chemical freeze-out in central Pb+Pb collisions at CERN SPS
energies, employing the hybrid version of UrQMD which models hadronization by
the Cooper-Frye mechanism, and matches to a final hadron-resonance cascade. We
fit the results both before and after the cascade stage using the Statistical
Hadronization Model, to assess the effect of the cascade phase. We observe a
strong effect on antibaryon yields except anti-{\Omega}, resulting in a shift
in T and {\mu}_B. We discuss the implications for the freeze-out curve.Comment: 5 pages, 8 figures. To appear in the proceedings of Quark Matter
2011, the XXII International Conference on Ultrarelativistic Nucleus-Nucleus
Collision
Numerical Studies of Fano Resonance in Quantum dots Embedded in AB Rings
The Fano resonance in quantum dots embedded in Aharonov-Bohm rings is
examined theoretically, using two models of non-interacting electrons. The
first model yields an analytical expression for the conductance G. G is written
in an extended Fano form with a complex parameter. The shape of the resonance
can be asymmetric or symmetric, depending on the magnetic flux enclosed in the
ring. The "phase" of the resonance is changed continuously with increasing the
flux in two-terminal situations. These are in accordance with recent
experimental results. In the second model, we consider the dephasing effect on
the Fano resonance by numerical calculations.Comment: 2 pages, 4 figures, to appear in J. Phys. Soc. Jpn., proceedings of
International Conference on Quantum Transport and Quantum Coherence
(Localisation 2002, Tokyo
Transformation of dynamical fluctuation into coherent energy
Studies of noise-induced motions are showing that coherent energy can be
extracted from some kinds of noise in a periodic ratchet.
Recently, energetics of Langevin dynamics is formulated by Sekimoto
[J.Phys.Soc.Jpn, 66 1234 (1997)], which can be applied to ratchet systems
described by Fokker-Planck equation. In this paper, we derive an energetics of
ratchet systems that can be applied to dynamical-noise-induced motion in a
static potential. Analytical efficiency of the energy transformation is derived
for the dynamical noise in an overdumping limit of the system.
Comparison between analytical and numerical studies is performed for chaotic
noise.Comment: 3 pages, 2 figures; submitted to Phys. Rev. Let
New Lithium Measurements in Metal-Poor Stars
We provide *lambda*6708 Li 1 measurements in 37 metal-poor stars, most of
which are poorly-studied or have no previous measurements, from high-resolution
and high-S/N spectroscopy obtained with the McDonald Observatory 2.1m and 2.7m
telescopes. The typical line strength and abundance uncertainties, confirmed by
the thinness of the Spite plateau manifested by our data and by comparison with
previous measurements, are <=4 mAng and <=0.07-0.10 dex respectively. Two rare
moderately metal-poor solar-Teff dwarfs, HIP 36491 and 40613, with
significantly depleted but still detectable Li are identified; future light
element determinations in the more heavily depeleted HIP 40613 may provide
constraints on the Li depletion mechanism acting in this star. We note two
moderately metal-poor and slightly evolved stars, HIP 105888 and G265-39, that
appear to be analogs of the low-Li moderately metal-poor subgiant HD 201889.
Preliminary abundance analysis of G 265-39 finds no abnormalities that suggest
the low Li content is associated with AGB mass-transfer or deep mixing and
p-capture. We also detect line doubling in HIP 4754, heretofore classified as
SB1.Comment: Accepted for publication in PASP, volume 912 (Feb 2012) 15 pages, 3
figures, 2 table
Trapping and observing single atoms in the dark
A single atom strongly coupled to a cavity mode is stored by
three-dimensional confinement in blue-detuned cavity modes of different
longitudinal and transverse order. The vanishing light intensity at the trap
center reduces the light shift of all atomic energy levels. This is exploited
to detect a single atom by means of a dispersive measurement with 95%
confidence in 0.010 ms, limited by the photon-detection efficiency. As the atom
switches resonant cavity transmission into cavity reflection, the atom can be
detected while scattering about one photon
The role of inhibitory feedback for information processing in thalamocortical circuits
The information transfer in the thalamus is blocked dynamically during sleep,
in conjunction with the occurence of spindle waves. As the theoretical
understanding of the mechanism remains incomplete, we analyze two modeling
approaches for a recent experiment by Le Masson {\sl et al}. on the
thalamocortical loop. In a first step, we use a conductance-based neuron model
to reproduce the experiment computationally. In a second step, we model the
same system by using an extended Hindmarsh-Rose model, and compare the results
with the conductance-based model. In the framework of both models, we
investigate the influence of inhibitory feedback on the information transfer in
a typical thalamocortical oscillator. We find that our extended Hindmarsh-Rose
neuron model, which is computationally less costly and thus siutable for
large-scale simulations, reproduces the experiment better than the
conductance-based model. Further, in agreement with the experiment of Le Masson
{\sl et al}., inhibitory feedback leads to stable self-sustained oscillations
which mask the incoming input, and thereby reduce the information transfer
significantly.Comment: 16 pages, 15eps figures included. To appear in Physical Review
The dynamics of laser droplet generation
We propose an experimental setup allowing for the characterization of laser
droplet generation in terms of the underlying dynamics, primarily showing that
the latter is deterministically chaotic by means of nonlinear time series
analysis methods. In particular, we use a laser pulse to melt the end of a
properly fed vertically placed metal wire. Due to the interplay of surface
tension, gravity force and light-metal interaction, undulating pendant droplets
are formed at the molten end, which eventually completely detach from the wire
as a consequence of their increasing mass. We capture the dynamics of this
process by employing a high-speed infrared camera, thereby indirectly measuring
the temperature of the wire end and the pendant droplets. The time series is
subsequently generated as the mean value over the pixel intensity of every
infrared snapshot. Finally, we employ methods of nonlinear time series analysis
to reconstruct the phase space from the observed variable and test it against
determinism and stationarity. After establishing that the observed laser
droplet generation is a deterministic and dynamically stationary process, we
calculate the spectra of Lyapunov exponents. We obtain a positive largest
Lyapunov exponent and a negative divergence, i.e., sum of all the exponents,
thus indicating that the observed dynamics is deterministically chaotic with an
attractor as solution in the phase space. In addition to characterizing the
dynamics of laser droplet generation, we outline industrial applications of the
process and point out the significance of our findings for future attempts at
mathematical modeling.Comment: 7 two-column pages, 8 figures; accepted for publication in Chaos
[supplementary material available at
http://www.matjazperc.com/chaos/laser.html
- …