7,850 research outputs found

    Hadronic Freeze-Out in A+A Collisions meets the Lattice QCD Parton-Hadron Transition Line

    Full text link
    We analyze hadrochemical freeze-out in central Pb+Pb collisions at CERN SPS and LHC energies. Employing the UrQMD hybrid transport model we study the effects of the final hadron/resonance expansion phase on the hadron multiplicities established at hadronization. The bulk meson yields freeze out directly at hadronization whereas the baryon-antibaryon sector is subject to significant alterations, due to annihilation and regeneration processes. We quantify the latter changes by survival factors for each species which are applied to modify the statistical model predictions for the data. The modified SM analysis recovers the hadronization points, which coincide with the recent lattice QCD predictions of the parton-hadron transition line at finite baryochemical potential.Comment: Proceedings of the 8th International Workshop on Critical Point and Onset of Deconfinement, March 11 to 15, 2013 Napa, California, US

    Imaging of Thermal Domains in ultrathin NbN films for Hot Electron Bolometers

    Full text link
    We present low-temperature scanning electron microscopy (LTSEM) investigations of superconducting microbridges made from ultrathin NbN films as used for hot electron bolometers. LTSEM probes the thermal structure within the microbridges under various dc current bias conditions, either via electron-beam-induced generation of an unstable hotspot, or via the beam-induced growth of a stable hotspot. Such measurements reveal inhomogeneities on a micron scale, which may be due to spatial variations in the NbN film or film-interface properties. Comparison with model calculations for the stable hotspot regime confirm the basic features of common hot spot models.Comment: 3 pages, 3 figure

    Validity of the Hadronic Freeze-Out Curve

    Full text link
    We analyze hadro-chemical freeze-out in central Pb+Pb collisions at CERN SPS energies, employing the hybrid version of UrQMD which models hadronization by the Cooper-Frye mechanism, and matches to a final hadron-resonance cascade. We fit the results both before and after the cascade stage using the Statistical Hadronization Model, to assess the effect of the cascade phase. We observe a strong effect on antibaryon yields except anti-{\Omega}, resulting in a shift in T and {\mu}_B. We discuss the implications for the freeze-out curve.Comment: 5 pages, 8 figures. To appear in the proceedings of Quark Matter 2011, the XXII International Conference on Ultrarelativistic Nucleus-Nucleus Collision

    Numerical Studies of Fano Resonance in Quantum dots Embedded in AB Rings

    Full text link
    The Fano resonance in quantum dots embedded in Aharonov-Bohm rings is examined theoretically, using two models of non-interacting electrons. The first model yields an analytical expression for the conductance G. G is written in an extended Fano form with a complex parameter. The shape of the resonance can be asymmetric or symmetric, depending on the magnetic flux enclosed in the ring. The "phase" of the resonance is changed continuously with increasing the flux in two-terminal situations. These are in accordance with recent experimental results. In the second model, we consider the dephasing effect on the Fano resonance by numerical calculations.Comment: 2 pages, 4 figures, to appear in J. Phys. Soc. Jpn., proceedings of International Conference on Quantum Transport and Quantum Coherence (Localisation 2002, Tokyo

    Transformation of dynamical fluctuation into coherent energy

    Full text link
    Studies of noise-induced motions are showing that coherent energy can be extracted from some kinds of noise in a periodic ratchet. Recently, energetics of Langevin dynamics is formulated by Sekimoto [J.Phys.Soc.Jpn, 66 1234 (1997)], which can be applied to ratchet systems described by Fokker-Planck equation. In this paper, we derive an energetics of ratchet systems that can be applied to dynamical-noise-induced motion in a static potential. Analytical efficiency of the energy transformation is derived for the dynamical noise in an overdumping limit of the system. Comparison between analytical and numerical studies is performed for chaotic noise.Comment: 3 pages, 2 figures; submitted to Phys. Rev. Let

    New Lithium Measurements in Metal-Poor Stars

    Get PDF
    We provide *lambda*6708 Li 1 measurements in 37 metal-poor stars, most of which are poorly-studied or have no previous measurements, from high-resolution and high-S/N spectroscopy obtained with the McDonald Observatory 2.1m and 2.7m telescopes. The typical line strength and abundance uncertainties, confirmed by the thinness of the Spite plateau manifested by our data and by comparison with previous measurements, are <=4 mAng and <=0.07-0.10 dex respectively. Two rare moderately metal-poor solar-Teff dwarfs, HIP 36491 and 40613, with significantly depleted but still detectable Li are identified; future light element determinations in the more heavily depeleted HIP 40613 may provide constraints on the Li depletion mechanism acting in this star. We note two moderately metal-poor and slightly evolved stars, HIP 105888 and G265-39, that appear to be analogs of the low-Li moderately metal-poor subgiant HD 201889. Preliminary abundance analysis of G 265-39 finds no abnormalities that suggest the low Li content is associated with AGB mass-transfer or deep mixing and p-capture. We also detect line doubling in HIP 4754, heretofore classified as SB1.Comment: Accepted for publication in PASP, volume 912 (Feb 2012) 15 pages, 3 figures, 2 table

    Trapping and observing single atoms in the dark

    Get PDF
    A single atom strongly coupled to a cavity mode is stored by three-dimensional confinement in blue-detuned cavity modes of different longitudinal and transverse order. The vanishing light intensity at the trap center reduces the light shift of all atomic energy levels. This is exploited to detect a single atom by means of a dispersive measurement with 95% confidence in 0.010 ms, limited by the photon-detection efficiency. As the atom switches resonant cavity transmission into cavity reflection, the atom can be detected while scattering about one photon

    The role of inhibitory feedback for information processing in thalamocortical circuits

    Get PDF
    The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the occurence of spindle waves. As the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for a recent experiment by Le Masson {\sl et al}. on the thalamocortical loop. In a first step, we use a conductance-based neuron model to reproduce the experiment computationally. In a second step, we model the same system by using an extended Hindmarsh-Rose model, and compare the results with the conductance-based model. In the framework of both models, we investigate the influence of inhibitory feedback on the information transfer in a typical thalamocortical oscillator. We find that our extended Hindmarsh-Rose neuron model, which is computationally less costly and thus siutable for large-scale simulations, reproduces the experiment better than the conductance-based model. Further, in agreement with the experiment of Le Masson {\sl et al}., inhibitory feedback leads to stable self-sustained oscillations which mask the incoming input, and thereby reduce the information transfer significantly.Comment: 16 pages, 15eps figures included. To appear in Physical Review

    The dynamics of laser droplet generation

    Full text link
    We propose an experimental setup allowing for the characterization of laser droplet generation in terms of the underlying dynamics, primarily showing that the latter is deterministically chaotic by means of nonlinear time series analysis methods. In particular, we use a laser pulse to melt the end of a properly fed vertically placed metal wire. Due to the interplay of surface tension, gravity force and light-metal interaction, undulating pendant droplets are formed at the molten end, which eventually completely detach from the wire as a consequence of their increasing mass. We capture the dynamics of this process by employing a high-speed infrared camera, thereby indirectly measuring the temperature of the wire end and the pendant droplets. The time series is subsequently generated as the mean value over the pixel intensity of every infrared snapshot. Finally, we employ methods of nonlinear time series analysis to reconstruct the phase space from the observed variable and test it against determinism and stationarity. After establishing that the observed laser droplet generation is a deterministic and dynamically stationary process, we calculate the spectra of Lyapunov exponents. We obtain a positive largest Lyapunov exponent and a negative divergence, i.e., sum of all the exponents, thus indicating that the observed dynamics is deterministically chaotic with an attractor as solution in the phase space. In addition to characterizing the dynamics of laser droplet generation, we outline industrial applications of the process and point out the significance of our findings for future attempts at mathematical modeling.Comment: 7 two-column pages, 8 figures; accepted for publication in Chaos [supplementary material available at http://www.matjazperc.com/chaos/laser.html
    corecore