2,261 research outputs found

    Effect of Mass Transfer on Aeroheating in Hypersonic Chemically Reacting Boundary Layers

    Get PDF
    Heat flux characterization of high-enthalpy boundary layer flows is key to optimize the performance and design of Thermal Protection System of next generation aerospace vehicles [1]. At atmospheric entry hypersonic speeds, ablation as well as surface catalycity impact boundary layer aeroheating. Out-gassing occurring from an ablative surface in planetary entry environment introduces a rich set of problems in thermodynamic, fluid dynamic, and material pyrolysis. Ablation leads to out-gassing and surface roughness, both of which are known to affect surface heating in hypersonic chemically reacting boundary layers via three main routes: gas blowing into the boundary layer from the wall, changing the surface heat transfer due to wall-flow chemical reactions, and modifying surface roughness via ablative processes

    Material Response Analysis of a Titan Entry Heatshield

    Get PDF
    Accurate calculation of thermal protection material response is critical to the vehicle design for missions to the Saturn moon Titan. In this study, Icarus, a three-dimensional, unstructured, finite-volume material response solver under active development at NASA Ames Research Center, is used to compute the in-depth material response of the Huygens spacecraft along its November 11 entry trajectory. The heatshield analyzed in this study consists of a five-layer stack-up of Phenolic Impregnated Carbon Ablator (PICA), aluminum honeycomb, adhesive, and face sheetmaterials. During planetary entry, the PICA outer layer is expected to undergo pyrolysis. A surface energy balance boundary condition that captures both time- and spatial-variance of surface properties during entry is used in the simulation

    Evidence for simultaneous jets and disk winds in luminous low-mass X-ray binaries

    Get PDF
    Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source's track in its X-ray color-color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that the simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and that the presence of disk winds does not necessarily result in jet suppression.Comment: Updated to match published version (2016, ApJ, 830, L5

    Preliminary Measurements of the Motion of Arcjet Current Channel Using Inductive Magnetic Probes

    Get PDF
    This paper covers the design and first measurements of non-perturbative, external inductive magnetic diagnostics for arcjet constrictors which can measure the motion of the arc current channel. These measurements of arc motion are motivated by previous simulations using the ARC Heater Simulator (ARCHeS), which predicted unsteady arc motion due to the magnetic kink instability. Measurements of the kink instability are relevant to characterizing motion of the enthalpy profile of the arcjet, the arcjet operational stability, and electrode damage due to associated arc detachment events. These first measurements indicate 4 mm oscillations at 0.5-2 kHz of the current profile

    Correlated Levels of mRNA and Soma Size in Single Identified Neurons: Evidence for Compartment-specific Regulation of Gene Expression

    Get PDF
    In addition to the overall complexity of transcriptional regulation, cells also must take into account the subcellular distribution of these gene products. This is particularly challenging for morphologically complex cells such as neurons. Yet the interaction between cellular morphology and gene expression is poorly understood. Here we provide some of the first evidence for a relationship between neuronal compartment size and maintenance of mRNA levels in neurons. We find that single-cell transcript levels of 18S rRNA, GAPDH, and EF1-alpha, all gene products with primary functions in the cell soma, are strongly correlated to soma size in multiple distinct neuronal types. Levels of mRNA for the K+ channel shal, which is localized exclusively to the soma, are negatively correlated with soma size, suggesting that gene expression does not simply track positively with compartment size. Conversely, levels of beta-actin and beta-tubulin mRNA, which are major cytoskeletal proteins of neuronal processes, do not correlate with soma size, but are strongly correlated with one another. Additionally, actin/tubulin expression levels correlate with voltage-gated ion channels that are uniquely localized to axons. These results suggest that steady-state transcript levels are differentially regulated based on the subcellular compartment within which a given gene product primarily acts

    Characterizing Simultaneous Embeddings with Fixed Edges

    Get PDF
    A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same Jordan curve in the simultaneous drawings. While any number of planar graphs have a simultaneous embedding without fixed edges, determining which graphs always share a simultaneous embedding with fixed edges (SEFE) has been open. We partially close this problem by giving a necessary condition to determine when pairs of graphs have a SEFE

    Characterizations of Restricted Pairs of Planar Graphs allowing Simultaneous Embeddings with Fixed Edges

    Get PDF
    A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the Euclidean plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same simple curve in the simultaneous drawing. Determining in polynomial time which pairs of graphs share a simultaneous embedding with ?xed edges (SEFE) has been open. We give a necessary and su?cient condition for whether a SEFE exists for pairs of graphs whose union is homeomorphic to K5 or K3,3 . This allows us to characterize the class of planar graphs that always have a SEFE with any other planar graph. We also characterize the class of biconnected outerplanar graphs that always have a SEFE with any other outerplanar graph. In both cases, we provide e?cient algorithms to compute a SEFE. Finally, we provide a linear-time decision algorithm for deciding whether a pair of biconnected outerplanar graphs has a SEFE

    Characterizing Simultaneous Embeddings with Fixed Edges

    Get PDF
    A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same Jordan curve in the simultaneous drawings. While any number of planar graphs have a simultaneous embedding without ?xed edges, determining which graphs always share a simultaneous embedding with ?xed edges (SEFE) has been open. We partially close this problem by giving a necessary condition to determine when pairs of graphs have a SEFE

    An SPQR-Tree Approach to Decide Special Cases of Simultaneous Embedding with Fixed Edges

    Get PDF
    We present a linear-time algorithm for solving the simulta- neous embedding problem with ?xed edges (SEFE) for a planar graph and a pseudoforest (a graph with at most one cycle) by reducing it to the following embedding problem: Given a planar graph G, a cycle C of G, and a partitioning of the remaining vertices of G, does there exist a planar embedding in which the induced subgraph on each vertex partite of G C is contained entirely inside or outside C ? For the latter prob- lem, we present an algorithm that is based on SPQR-trees and has linear running time. We also show how we can employ SPQR-trees to decide SEFE for two planar graphs where one graph has at most two cycles and the intersection is a pseudoforest in linear time. These results give rise to our hope that our SPQR-tree approach might eventually lead to a polynomial-time algorithm for deciding the general SEFE problem for two planar graphs

    Measuring vaccine confidence: introducing a global vaccine confidence index.

    Get PDF
    BACKGROUND: Public confidence in vaccination is vital to the success of immunisation programmes worldwide. Understanding the dynamics of vaccine confidence is therefore of great importance for global public health. Few published studies permit global comparisons of vaccination sentiments and behaviours against a common metric. This article presents the findings of a multi-country survey of confidence in vaccines and immunisation programmes in Georgia, India, Nigeria, Pakistan, and the United Kingdom (UK) - these being the first results of a larger project to map vaccine confidence globally. METHODS: Data were collected from a sample of the general population and from those with children under 5 years old against a core set of confidence questions. All surveys were conducted in the relevant local-language in Georgia, India, Nigeria, Pakistan, and the UK. We examine confidence in immunisation programmes as compared to confidence in other government health services, the relationships between confidence in the system and levels of vaccine hesitancy, reasons for vaccine hesitancy, ultimate vaccination decisions, and their variation based on country contexts and demographic factors. RESULTS: The numbers of respondents by country were: Georgia (n=1000); India (n=1259); Pakistan (n=2609); UK (n=2055); Nigerian households (n=12554); and Nigerian health providers (n=1272). The UK respondents with children under five years of age were more likely to hesitate to vaccinate, compared to other countries. Confidence in immunisation programmes was more closely associated with confidence in the broader health system in the UK (Spearman's ρ=0.5990), compared to Nigeria (ρ=0.5477), Pakistan (ρ=0.4491), and India (ρ=0.4240), all of which ranked confidence in immunisation programmes higher than confidence in the broader health system. Georgia had the highest rate of vaccine refusals (6 %) among those who reported initial hesitation. In all other countries surveyed most respondents who reported hesitating to vaccinate went on to receive the vaccine except in Kano state, Nigeria, where the percentage of those who ultimately refused vaccination after initially hesitating was as high as 76%) Reported reasons for hesitancy in all countries were classified under the domains of "confidence," "convenience," or "complacency," and confidence issues were found to be the primary driver of hesitancy in all countries surveyed
    corecore