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Abstract: Accurate calculation of thermal protection material response is critical to the vehicle design for missions to the Saturn moon Titan. In this
study, Icarus, a three-dimensional, unstructured, finite-volume material response solver under active development at NASA Ames Research Center,
Is used to compute the in-depth material response of the Huygens spacecraft along its November 11 entry trajectory. The heatshield analyzed in
this study consists of a five-layer stack-up of Phenolic Impregnated Carbon Ablator (PICA), aluminum honeycomb, adhesive, and face sheet

materials. During planetary entry, the PICA outer layer is expected to undergo pyrolysis. A surface energy balance boundary condition that

captures both time- and spatial-variance of surface properties during entry is used In the simulation.

lcarus

 |carus is a 3-D, finite-volume,
unstructured material response
code.

Results

Motivations....

 Design and sizing of the thermal protection system (TPS)
of an entry vehicle requires high-fidelity material response
codes coupled to computational fluid dynamics (CFD)
and full radiation transport.

« |carus computation run for 100 seconds of simulation time
starting at the 151 sec trajectory point conditions. Zero-heating
cool-down conditions were applied after 225 sec.

- Can model ablating, pyrolyzing,
melting, or vaporizing materials
subject to a wide range of
surface boundary conditions.

« Surface boundary conditions were both time- and spatially-

Mass flow due to varying during the simulation.

material decomposition
and surface ablation

- Surface temperatures reach a peak value of 2068 K att = 189
sec. Surface then starts to cool as external heating rates

+ |carus grid of Huygens entry decrease. Peak temperature at t = 225 sec is 1003 K.

vehicle is a 3-D wedge with a
mixture of hexahedral and
prismatic grid elements.

- Because radiative heating increases along flank towards the
shoulder, surface temperatures on the upper flank region are

3-D wedge grid of Huygens heatshield . : .
similar to stagnation point values.

Strong convective
and radiative
heat flux to the
surface

Close-up of stagnation line
showing 5-layer stack-up

Planetary Entry Environment
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The goal of the current work is to apply the Icarus material
response code to compute the in-depth material response of a

multi-layer TPS material stack-up along a representative Titan entry
trajectory.

Surface Environments and
Boundary Conditions

- The DPLR CFD code and NEQAIR line-by-line radiation
codes were used to compute surface heating rates and
pressure.

« 13-species gas chemistry model: CH4, CH3, CH2, N2, C2,
H2, CH, NH, CN, N, C, H, Ar.

« N2:0.970, CH4: 0.023, Ar: 0.007 by mole fraction

- Surface heating dominated by radiative component.
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Huygens Vehicle Geometry
and TPS Material Stack-up

 The Huygens probe was a 60-deg half-angle sphere-
cone with a 2.7 m base diameter and a 1.25 m nose
radius.

Surface temperatures, t=189 sec =225 sec

* In-depth temperature profiles indicate heat soak does not reach
the PICA backface at the 100 second simulation time cut-off.

- Radiative heating increases along flank towards shoulder
due to CN levels in shock layer.
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Huygens entry
vehicle geometry
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Convective and radiative heat pulse
at the stagnation point.

Surface heating rates, t = 189
second trajectory point.

Summary/Conclusions

» |carus material response solver demonstrated ability to
compute in-depth material response of Huygens probe

- DPLR/NEQAIR solutions at 9 points along Huygens
November 11 trajectory (time = 151 - 225 sec) used to
create time- and spatially-varying boundary conditions.

 For this study, a 5-layer TPS

material stack-up was modeled: PICA 0.0318 m * An ec;_e_rohe_ating jl_"f?ce energy balance (SEB) boundary heatshield during an entry into Titan. The 100 second
’ « 0.0318 m PICA outer layer condition is used in lcarus. simulation time captured the entire entry heat pulse. ,
) * 0.0004 m HT-424 adhesive }&23340062?)24 m Geond = Cr(Ryec — [1 + BL + B|h,) + mch, + 1y hy + - Five-layer material stack-up was modeled.
° - - ' m ' |
0.0005 m M55-J face sheet | (T4 — aTh) - DPLR/NEQAIR simulations used to create 4-D, time- and
* 0.0318 m layer of aluminum Al-honeycomb 0.0318 m Araa = OL€Iw = Aloo spatially-varying surface boundary conditions
honeycomb
« 0.0005 m M55-J face sheet M55-J 0.0005 m - Normalized char mass flux computed using a 45-species Y

Future Work

e |mplement Stanford/DLR dust
particle model into Icarus for Mars
entry simulations.

PICA-Titan GSI gas mixture.

» Pyrolysis gas mass flux computed using a 39-species
PICA pyrolysis gas mixture.
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