209 research outputs found

    Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis

    Get PDF
    AbstractThe polymerase chain reaction is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. We have developed and tested efficient tools for PCR primer and probe design, which also predict oligonucleotide properties based on experimental studies of PCR efficiency. The tools provide comprehensive facilities for designing primers for most PCR applications and their combinations, including standard, multiplex, long-distance, inverse, real-time, unique, group-specific, bisulphite modification assays, Overlap-Extension PCR Multi-Fragment Assembly, as well as a programme to design oligonucleotide sets for long sequence assembly by ligase chain reaction. The in silico PCR primer or probe search includes comprehensive analyses of individual primers and primer pairs. It calculates the melting temperature for standard and degenerate oligonucleotides including LNA and other modifications, provides analyses for a set of primers with prediction of oligonucleotide properties, dimer and G-quadruplex detection, linguistic complexity, and provides a dilution and resuspension calculator

    Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants

    Get PDF
    Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. A cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established

    Palindromic Sequence-Targeted (PST) PCR, Version 2: An Advanced Method for High-Throughput Targeted Gene Characterization and Transposon Display

    Get PDF
    Genome walking (GW), a strategy for capturing previously unsequenced DNA fragments that are in proximity to a known sequence tag, is currently predominantly based on PCR. Recently developed PCR-based methods allow for combining of sequence-specific primers with designed capturing primers capable of annealing to unknown DNA targets, thereby offering the rapidity and effectiveness of PCR. This study presents a methodological improvement to the previously described GW technique known as palindromic sequence-targeted PCR (PST-PCR). Like PST-PCR, this new method (called PST-PCR v.2) relies on targeting of capturing primers to palindromic sequences arbitrarily present in natural DNA templates. PST-PCR v.2 consists of two rounds of PCR. The first round uses a combination of one sequence-specific primer with one capturing (PST) primer. The second round uses a combination of a single (preferred) or two universal primers; one anneals to a 5′ tail attached to the sequence-specific primer and the other anneals to a different 5′ tail attached to the PST primer. The key advantage of PST-PCR v.2 is the convenience of using a single universal primer with invariable sequences in GW processes involving various templates. The entire procedure takes approximately 2–3 h to produce the amplified PCR fragment, which contains a portion of a template flanked by the sequence-specific and capturing primers. PST-PCR v.2 is highly suitable for simultaneous work with multiple samples. For this reason, PST-PCR v.2 can be applied beyond the classical task of GW for studies in population genetics, in which PST-PCR v.2 is a preferred alternative to amplified fragment length polymorphism (AFLP) or next-generation sequencing. Furthermore, the conditions for PST-PCR v.2 are easier to optimize, as only one sequence-specific primer is used. This reduces non-specific random amplified polymorphic DNA (RAPD)-like amplification and formation of non-templated amplification. Importantly, akin to the previous version, PST-PCR v.2 is not sensitive to template DNA sequence complexity or quality. This study illustrates the utility of PST-PCR v.2 for transposon display (TD), which is a method to characterize inter- or intra-specific variability related to transposon integration sites. The Ac transposon sequence in the maize (Zea mays) genome was used as a sequence tag during the TD procedure to characterize the Ac integration sites

    Projected impacts of sowing date and cultivar choice on the timing of heat and drought stress in spring barley grown along a European transect

    Get PDF
    Publisher Copyright: © 2022Barley is one of the most important cereals for animal and human consumption. Barley heading and grain filling are especially vulnerable to heat and drought stress, which are projected to increase in the future. Therefore, site-specific adaptation options, like cultivar choice or shifting sowing dates, will be necessary. Using a global climate model ensemble and a phenology model we projected spring barley heading and maturity dates for 2031–50 for climatically contrasting sites: Helsinki (Finland), Dundee (Scotland) and Zaragoza (Spain). We compared the projected future heading and maturity dates with the baseline period (1981–2010) and described corresponding heat and drought stress conditions and how they were affected by adaptation options, i.e. shifting the sowing date by + /- 10–20 days, choosing early or late heading cultivars or combining both adaptation options, with agroclimatic indicators. At all sites and sowing dates, heading and maturity in 2031–50 occurred earlier (up to three weeks with earliest sowing) than in the baseline period. Along the European transect, the projected heading and grain filling periods were hotter than under baseline conditions but advancing heading alleviated heat stress notably. Different indicators signaled more severe drought conditions for 2031–50. At Helsinki, delayed heading periods were exposed to less drought stress, likely because the typical early summer droughts were avoided. At Zaragoza, fewer, yet more intense, rainfall events occurred during grain filling of the early cultivars. Only under scenario RCP4.5, heading and grain filling periods at Dundee were slightly wetter for the early cultivars. Our study provides a unique overview of agroclimatic conditions for heading and grain filling periods projected for 2031–50 along a climatic transect and quantifies the effects of different adaptations for spring barley. The approach can be extended by coupling the agroclimatic indicators with crop modelling.Peer reviewe

    Retrotransposon-Based Genetic Diversity Assessment in Wild Emmer Wheat (Triticum turgidum ssp. dicoccoides)

    Get PDF
    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is the wild ancestor of all cultivated tetraploid and hexaploid wheats and harbors a large amount of genetic diversity. This diversity is expected to display eco-geographical patterns of variation, conflating gene flow, and local adaptation. As self-replicating entities comprising the bulk of genomic DNA in wheat, retrotransposons are expected to create predominantly neutral variation via their propagation. Here, we have examined the genetic diversity of 1 Turkish and 14 Israeli populations of wild emmer wheat, based on the retrotransposon marker methods IRAP and REMAP. The level of genetic diversity we detected was in agreement with previous studies that were performed with a variety of marker systems assaying genes and other genomic components. The genetic distances failed to correlate with the geographical distances, suggesting local selection on geographically widespread haplotypes (‘weak selection’). However, the proportion of polymorphic loci correlated with the population latitude, which may reflect the temperature and water availability cline. Genetic diversity correlated with longitude, the east being more montane. Principal component analyses on the marker data separated most of the populations.Peer reviewe

    Microsatellite Diversity, Complexity, and Host Range of Mycobacteriophage Genomes of the Siphoviridae Family

    Get PDF
    The incidence, distribution, and variation of simple sequence repeats (SSRs) in viruses is instrumental in understanding the functional and evolutionary aspects of repeat sequences. Full-length genome sequences retrieved from NCBI were used for extraction and analysis of repeat sequences using IMEx software. We have also developed two MATLAB-based tools for extraction of gene locations from GenBank in tabular format and simulation of this data with SSR incidence data. Present study encompassing 147 Mycobacteriophage genomes revealed 25,284 SSRs and 1,127 compound SSRs (cSSRs) through IMEx. Mono- to hexa-nucleotide motifs were present. The SSR count per genome ranged from 78 (M100) to 342 (M58) while cSSRs incidence ranged from 1 (M138) to 17 (M28, M73). Though cSSRs were present in all the genomes, their frequency and SSR to cSSR conversion percentage varied from 1.08 (M138 with 93 SSRs) to 8.33 (M116 with 96 SSRs). In terms of localization, the SSRs were predominantly localized to coding regions (∼78%). Interestingly, genomes of around 50 kb contained a similar number of SSRs/cSSRs to that in a 110 kb genome, suggesting functional relevance for SSRs which was substantiated by variation in motif constitution between species with different host range. The three species with broad host range (M97, M100, M116) have around 90% of their mono-nucleotide repeat motifs composed of G or C and only M16 has both A and T mononucleotide motifs. Around 20% of the di-nucleotide repeat motifs in the genomes exhibiting a broad host range were CT/TC, which were either absent or represented to a much lesser extent in the other genomes

    Genomic regions associated with chocolate spot (Botrytis fabae Sard.) resistance in faba bean (Vicia faba L.)

    Get PDF
    Chocolate spot (CS), caused by Botrytis fabae Sard., is an important threat to global faba bean production. Growing resistant faba bean cultivars is, therefore, paramount to preventing yield loss. To date, there have been no reported quantitative trait loci (QTL) associated with CS resistance in faba bean. The objective of this study was to identify genomic regions associated with CS resistance using a recombinant inbred line (RIL) population derived from resistant accession ILB 938. A total of 165 RILs from the cross Melodie/2 x ILB 938/2 were genotyped and evaluated for CS reactions under replicated controlled climate conditions. The RIL population showed significant variation in response to CS resistance. QTL analysis identified five loci contributing to CS resistance on faba bean chromosomes 1 and 6, accounting for 28.4% and 12.5%, respectively, of the total phenotypic variance. The results of this study not only provide insight into disease-resistance QTL, but also can be used as potential targets for marker-assisted breeding in faba bean genetic improvement for CS resistance.Peer reviewe

    Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts

    Get PDF
    Background CACTA elements are DNA transposons and are found in numerous organisms. Despite their low activity, several thousand copies can be identified in many genomes. CACTA elements transpose using a 'cut-and-paste' mechanism, which is facilitated by a DDE transposase. DDE transposases from CACTA elements contain, despite their conserved function, different exon numbers among various CACTA families. While earlier studies analyzed the ancestral history of the DDE transposases, no studies have examined exon loss and gain with a view of mechanisms that could drive the changes. Results We analyzed 64 transposases from different CACTA families among monocotyledonous and eudicotyledonous host species. The annotation of the exon/intron boundaries showed a range from one to six exons. A robust multiple sequence alignment of the 64 transposases based on their protein sequences was created and used for phylogenetic analysis, which revealed eight different clades. We observed that the exon numbers in CACTA transposases are not specific for a host genome. We found that ancient CACTA lineages diverged before the divergence of monocotyledons and eudicotyledons. Most exon/intron boundaries were found in three distinct regions among all the transposases, grouping 63 conserved intron/exon boundaries. Conclusions We propose a model for the ancestral CACTA transposase gene, which consists of four exons, that predates the divergence of the monocotyledons and eudicotyledons. Based on this model, we propose pathways of intron loss or gain to explain the observed variation in exon numbers. While intron loss appears to have prevailed, a putative case of intron gain was nevertheless observedPeer reviewe
    • …
    corecore