6,498 research outputs found

    A H2 PEM fuel cell and high energy dense battery hybrid energy source for an urban electric vehicle

    Get PDF
    Electric vehicles are set to play a prominent role in addressing the energy and environmental impact of an increasing road transport population by offering a more energy efficient and less polluting drive-train alternative to conventional internal combustion engine (ICE) vehicles. Given the energy (and hence range) and performance limitations of electro-chemical battery storage systems, hybrid systems combining energy and power dense storage technologies have been proposed for vehicle applications. The paper discusses the application of a hydrogen fuel cell as a range extender for an urban electric vehicle for which the primary energy source is provided by a high energy dense battery. A review of fuel cell systems and automotive drive-train application issues are discussed, together with an overview of the battery technology. The prototype fuel cell and battery component simulation models are presented and their performance as a combined energy/power source assessed for typical urban and sub-urban driving scenario

    Constructing smooth potentials of mean force, radial, distribution functions and probability densities from sampled data

    Full text link
    In this paper a method of obtaining smooth analytical estimates of probability densities, radial distribution functions and potentials of mean force from sampled data in a statistically controlled fashion is presented. The approach is general and can be applied to any density of a single random variable. The method outlined here avoids the use of histograms, which require the specification of a physical parameter (bin size) and tend to give noisy results. The technique is an extension of the Berg-Harris method [B.A. Berg and R.C. Harris, Comp. Phys. Comm. 179, 443 (2008)], which is typically inaccurate for radial distribution functions and potentials of mean force due to a non-uniform Jacobian factor. In addition, the standard method often requires a large number of Fourier modes to represent radial distribution functions, which tends to lead to oscillatory fits. It is shown that the issues of poor sampling due to a Jacobian factor can be resolved using a biased resampling scheme, while the requirement of a large number of Fourier modes is mitigated through an automated piecewise construction approach. The method is demonstrated by analyzing the radial distribution functions in an energy-discretized water model. In addition, the fitting procedure is illustrated on three more applications for which the original Berg-Harris method is not suitable, namely, a random variable with a discontinuous probability density, a density with long tails, and the distribution of the first arrival times of a diffusing particle to a sphere, which has both long tails and short-time structure. In all cases, the resampled, piecewise analytical fit outperforms the histogram and the original Berg-Harris method.Comment: 14 pages, 15 figures. To appear in J. Chem. Phy

    Efficient algorithms for rigid body integration using optimized splitting methods and exact free rotational motion

    Full text link
    Hamiltonian splitting methods are an established technique to derive stable and accurate integration schemes in molecular dynamics, in which additional accuracy can be gained using force gradients. For rigid bodies, a tradition exists in the literature to further split up the kinetic part of the Hamiltonian, which lowers the accuracy. The goal of this note is to comment on the best combination of optimized splitting and gradient methods that avoids splitting the kinetic energy. These schemes are generally applicable, but the optimal scheme depends on the desired level of accuracy. For simulations of liquid water it is found that the velocity Verlet scheme is only optimal for crude simulations with accuracies larger than 1.5%, while surprisingly a modified Verlet scheme (HOA) is optimal up to accuracies of 0.4% and a fourth order gradient scheme (GIER4) is optimal for even higher accuracies.Comment: 2 pages, 1 figure. Added clarifying comments. Accepted for publication in the Journal of Chemical Physic

    Semi-invariants of symmetric quivers of tame type

    Full text link
    A symmetric quiver (Q,σ)(Q,\sigma) is a finite quiver without oriented cycles Q=(Q0,Q1)Q=(Q_0,Q_1) equipped with a contravariant involution σ\sigma on Q0⊔Q1Q_0\sqcup Q_1. The involution allows us to define a nondegenerate bilinear form on a representation $V$ of $Q$. We shall say that $V$ is orthogonal if is symmetric and symplectic if is skew-symmetric. Moreover, we define an action of products of classical groups on the space of orthogonal representations and on the space of symplectic representations. So we prove that if (Q,σ)(Q,\sigma) is a symmetric quiver of tame type then the rings of semi-invariants for this action are spanned by the semi-invariants of determinantal type cVc^V and, when matrix defining cVc^V is skew-symmetric, by the Pfaffians pfVpf^V. To prove it, moreover, we describe the symplectic and orthogonal generic decomposition of a symmetric dimension vector

    Quantum free energy differences from non-equilibrium path integrals: I. Methods and numerical application

    Full text link
    The imaginary-time path integral representation of the canonical partition function of a quantum system and non-equilibrium work fluctuation relations are combined to yield methods for computing free energy differences in quantum systems using non-equilibrium processes. The path integral representation is isomorphic to the configurational partition function of a classical field theory, to which a natural but fictitious Hamiltonian dynamics is associated. It is shown that if this system is prepared in an equilibrium state, after which a control parameter in the fictitious Hamiltonian is changed in a finite time, then formally the Jarzynski non-equilibrium work relation and the Crooks fluctuation relation are shown to hold, where work is defined as the change in the energy as given by the fictitious Hamiltonian. Since the energy diverges for the classical field theory in canonical equilibrium, two regularization methods are introduced which limit the number of degrees of freedom to be finite. The numerical applicability of the methods is demonstrated for a quartic double-well potential with varying asymmetry. A general parameter-free smoothing procedure for the work distribution functions is useful in this context.Comment: 20 pages, 4 figures. Added clarifying remarks and fixed typo

    How should we interpret the two transport relaxation times in the cuprates ?

    Full text link
    We observe that the appearance of two transport relaxation times in the various transport coefficients of cuprate metals may be understood in terms of scattering processes that discriminate between currents that are even, or odd under the charge conjugation operator. We develop a transport equation that illustrates these ideas and discuss its experimental and theoretical consequences.Comment: 19 pages, RevTeX with 8 postscript figures included. To appear in ``Non Fermi Liquid Physics'', J. Phys:Cond. Matt. (1997

    The effect of curvature and topology on membrane hydrodynamics

    Full text link
    We study the mobility of extended objects (rods) on a spherical liquid-liquid interface to show how this quantity is modified in a striking manner by both the curvature and the topology of the interface. We present theoretical calculations and experimental measurements of the interfacial fluid velocity field around a moving rod bound to the crowded interface of a water-in-oil droplet. By using different droplet sizes, membrane viscosities, and rod lengths, we show that the viscosity mismatch between the interior and exterior fluids leads to a suppression of the fluid flow on small droplets that cannot be captured by the flat interface predictions.Comment: 4 pages, 3 figure

    Analysis of the Dynamics of Liquid Aluminium: Recurrent Relation Approach

    Full text link
    By use of the recurrent relation approach (RRA) we study the microscopic dynamics of liquid aluminium at T=973 K and develop a theoretical model which satisfies all the corresponding sum rules. The investigation covers the inelastic features as well as the crossover of our theory into the hydrodynamical and the free-particle regimes. A comparison between our theoretical results with those following from a generalized hydrodynamical approach is also presented. In addition to this we report the results of our molecular dynamics simulations for liquid aluminium, which are also discussed and compared to experimental data. The received results reveal that (i) the microscopical dynamics of density fluctuations is defined mainly by the first four even frequency moments of the dynamic structure factor, and (ii) the inherent relation of the high-frequency collective excitations observed in experimental spectra of dynamic structure factor S(k,ω)S(k,\omega) with the two-, three- and four-particle correlations.Comment: 11 pages, 4 figure

    Measuring commissioners’ willingness-to-pay for community based childhood obesity prevention programmes using a discrete choice experiment

    Get PDF
    Background: In the UK, rates of childhood obesity remain high. Community based programmes for child obesity prevention are available to be commissioned by local authorities. However, there is a lack of evidence regarding how programmes are commissioned and which attributes of programmes are valued most by commissioners. The aim of this study was to determine the factors that decision-makers prioritise when commissioning programmes that target childhood obesity prevention. Methods: An online discrete choice experiment (DCE) was used to survey commissioners and decision makers in the UK to assess their willingness-to-pay for childhood obesity programmes. Results: A total of 64 commissioners and other decision makers completed the DCE. The impact of programmes on behavioural outcomes was prioritised, with participants willing to pay an extra £16,600/year if average daily fruit and vegetable intake increased for each child by one additional portion. Participants also prioritised programmes that had greater number of parents fully completing them, and were willing to pay an extra £4810/year for every additional parent completing a programme. The number of parents enrolling in a programme (holding the number completing fixed) and hours of staff time required did not significantly influence choices. Conclusions: Emphasis on high programme completion rates and success increasing children’s fruit and vegetable intake has potential to increase commissioning of community based obesity prevention programmes

    Scanning Transmission Ion Microscopy as it Complements Particle Induced X-Ray Emission Microanalysis

    Get PDF
    The early uses of Scanning Transmission Ion Microscopy (STIM) with MeV ions are reviewed. The transformation of STIM energy-loss images into maps of areal density is discussed, and is illustrated with images of a fruit fly head (Drosophila melanogaster). Freeze-dried male heads are transparent to 4-MeV protons in the dorsal and frontal directions, but in the sagittal direction the brain is opaque. STIM with molecular ions is shown to be useful for increasing contrast in low density areas. For recording registered STIM and PIXE images without changing accelerator parameters, apertures are used to accomplish the required change in beam intensity (a factor of 105). Molecular ions are used to assess contamination of the microbeam by scattered ions. Pixel by pixel ratios of x-ray intensity to areal density are taken to obtain maps of element concentrations. Calcium and iron maps are shown. Inner parts of the fly head are clearly seen in the concentration maps. The PIXE exposure caused differential displacements of inner parts of the head by 15 ÎŒm or less. Weight loss during the PIXE exposure was measured to be 3%
    • 

    corecore