758 research outputs found

    Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi_{1-x}Sb_{x}

    Full text link
    The angular-dependent magnetoresistance and the Shubnikov-de Haas oscillations are studied in a topological insulator Bi_{0.91}Sb_{0.09}, where the two-dimensional (2D) surface states coexist with a three-dimensional (3D) bulk Fermi surface (FS). Two distinct types of oscillatory phenomena are discovered in the angular-dependence: The one observed at lower fields is shown to originate from the surface state, which resides on the (2\bar{1}\bar{1}) plane, giving a new way to distinguish the 2D surface state from the 3D FS. The other one, which becomes prominent at higher fields, probably comes from the (111) plane and is obviously of unknown origin, pointing to new physics in transport properties of topological insulators.Comment: 4 pages, 5 figures, revised version with improved data and analysi

    Combination quantum oscillations in canonical single-band Fermi liquids

    Get PDF
    Chemical potential oscillations mix individual-band frequencies of the de Haas-van Alphen (dHvA) and Shubnikov-de Haas (SdH) magneto-oscillations in canonical low-dimensional multi-band Fermi liquids. We predict a similar mixing in canonical single-band Fermi liquids, which Fermi-surfaces have two or more extremal cross-sections. Combination harmonics are analysed using a single-band almost two-dimensional energy spectrum. We outline some experimental conditions allowing for resolution of combination harmonics

    Magnetic quantum oscillations in nanowires

    Get PDF
    Analytical expressions for the magnetization and the longitudinal conductivity of nanowires are derived in a magnetic field, B. We show that the interplay between size and magnetic field energy-level quantizations manifests itself through novel magnetic quantum oscillations in metallic nanowires. There are three characteristic frequencies of de Haas-van Alphen (dHvA) and Shubnikov-de Haas (SdH) oscillations, F=F_0,F_1, and F_2 in contrast with a single frequency F'_0 in simple bulk metals. The amplitude of oscillations is strongly enhanced in some "magic" magnetic fields. The wire cross-section S can be measured along with the Fermi surface cross-section, S_F

    On kernel engineering via Paley–Wiener

    Get PDF
    A radial basis function approximation takes the form s(x)=k=1nakϕ(xbk),xRd,s(x)=\sum_{k=1}^na_k\phi(x-b_k),\quad x\in {\mathbb{R}}^d, where the coefficients a 1,…,a n are real numbers, the centres b 1,…,b n are distinct points in ℝ d , and the function φ:ℝ d →ℝ is radially symmetric. Such functions are highly useful in practice and enjoy many beautiful theoretical properties. In particular, much work has been devoted to the polyharmonic radial basis functions, for which φ is the fundamental solution of some iterate of the Laplacian. In this note, we consider the construction of a rotation-invariant signed (Borel) measure μ for which the convolution ψ=μ φ is a function of compact support, and when φ is polyharmonic. The novelty of this construction is its use of the Paley–Wiener theorem to identify compact support via analysis of the Fourier transform of the new kernel ψ, so providing a new form of kernel engineering

    On spherical averages of radial basis functions

    Get PDF
    A radial basis function (RBF) has the general form s(x)=k=1nakϕ(xbk),xRd,s(x)=\sum_{k=1}^{n}a_{k}\phi(x-b_{k}),\quad x\in\mathbb{R}^{d}, where the coefficients a 1,…,a n are real numbers, the points, or centres, b 1,…,b n lie in ℝ d , and φ:ℝ d →ℝ is a radially symmetric function. Such approximants are highly useful and enjoy rich theoretical properties; see, for instance (Buhmann, Radial Basis Functions: Theory and Implementations, [2003]; Fasshauer, Meshfree Approximation Methods with Matlab, [2007]; Light and Cheney, A Course in Approximation Theory, [2000]; or Wendland, Scattered Data Approximation, [2004]). The important special case of polyharmonic splines results when φ is the fundamental solution of the iterated Laplacian operator, and this class includes the Euclidean norm φ(x)=‖x‖ when d is an odd positive integer, the thin plate spline φ(x)=‖x‖2log  ‖x‖ when d is an even positive integer, and univariate splines. Now B-splines generate a compactly supported basis for univariate spline spaces, but an analyticity argument implies that a nontrivial polyharmonic spline generated by (1.1) cannot be compactly supported when d>1. However, a pioneering paper of Jackson (Constr. Approx. 4:243–264, [1988]) established that the spherical average of a radial basis function generated by the Euclidean norm can be compactly supported when the centres and coefficients satisfy certain moment conditions; Jackson then used this compactly supported spherical average to construct approximate identities, with which he was then able to derive some of the earliest uniform convergence results for a class of radial basis functions. Our work extends this earlier analysis, but our technique is entirely novel, and applies to all polyharmonic splines. Furthermore, we observe that the technique provides yet another way to generate compactly supported, radially symmetric, positive definite functions. Specifically, we find that the spherical averaging operator commutes with the Fourier transform operator, and we are then able to identify Fourier transforms of compactly supported functions using the Paley–Wiener theorem. Furthermore, the use of Haar measure on compact Lie groups would not have occurred without frequent exposure to Iserles’s study of geometric integration

    Interplay of size and Landau quantizations in the de Haas-van Alphen oscillations of metallic nanowires

    Get PDF
    We examine the interplay between size quantization and Landau quantization in the De Haas-Van Alphen oscillations of clean, metallic nanowires in a longitudinal magnetic field for `hard' boundary conditions, i.e. those of an infinite round well, as opposed to the `soft' parabolically confined boundary conditions previously treated in Alexandrov and Kabanov (Phys. Rev. Lett. {\bf 95}, 076601 (2005) (AK)). We find that there exist {\em two} fundamental frequencies as opposed to the one found in bulk systems and the three frequencies found by AK with soft boundary counditions. In addition, we find that the additional `magic resonances' of AK may be also observed in the infinite well case, though they are now damped. We also compare the numerically generated energy spectrum of the infinite well potential with that of our analytic approximation, and compare calculations of the oscillatory portions of the thermodynamic quantities for both models.Comment: Title changed, paper streamlined on suggestion of referrees, typos corrected, numerical error in figs 2 and 3 corrected and final result simplified -- two not three frequencies (as in the previous version) are observed. Abstract altered accordingly. Submitted to Physical Review

    Magnetic quantum oscillations in doped antiferromagnetic insulators

    Get PDF
    Energy spectrum of electrons (holes) doped into a two-dimensional antiferromagnetic insulator is quantized in an external magnetic field of arbitrary direction. A peculiar dependence of de Haas-van Alphen (dHvA) or Shubnikov-de Haas (SdH) magneto-oscillation amplitudes on the azimuthal in-plane angle from the magnetization direction and on the polar angle from the out-of-plane direction is found, which can be used as a sensitive probe of the antiferromagnetic order in doped Mott-Hubbard, spin-density wave (SDW), and conventional band-structure insulators.Comment: 4 pages 4 figure

    Ginzburg-Landau-Gor'kov Theory of Magnetic oscillations in a type-II 2-dimensional Superconductor

    Full text link
    We investigate de Haas-van Alphen (dHvA) oscillations in the mixed state of a type-II two-dimensional superconductor within a self-consistent Gor'kov perturbation scheme. Assuming that the order parameter forms a vortex lattice we can calculate the expansion coefficients exactly to any order. We have tested the results of the perturbation theory to fourth and eight order against an exact numerical solution of the corresponding Bogoliubov-de Gennes equations. The perturbation theory is found to describe the onset of superconductivity well close to the transition point Hc2H_{c2}. Contrary to earlier calculations by other authors we do not find that the perturbative scheme predicts any maximum of the dHvA-oscillations below Hc2H_{c2}. Instead we obtain a substantial damping of the magnetic oscillations in the mixed state as compared to the normal state. We have examined the effect of an oscillatory chemical potential due to particle conservation and the effect of a finite Zeeman splitting. Furthermore we have investigated the recently debated issue of a possibility of a sign change of the fundamental harmonic of the magnetic oscillations. Our theory is compared with experiment and we have found good agreement.Comment: 39 pages, 8 figures. This is a replacement of supr-con/9608004. Several sections changed or added, including a section on the effect of spin and the effect of a conserved number of particles. To be published in Phys. Rev.

    Highly differential count of circulating and tumor infiltrating immune cells in patients with non-HCV/non-HBV hepatocellular carcinoma

    Get PDF
    BACKGROUND Liver transplantation and liver resection are curative options for early hepatocellular carcinoma (HCC). The outcome is in part depended on the immunological response to the malignancy. In this study, we aimed to identify immunological profiles of non-HCV/non-HBV HCC patients. METHODS Thirty-nine immune cell subsets were measured with multicolor flow cytometry. This immunophenotyping was performed in peripheral blood (PB) and tumor specimens of 10 HCC resection patients and 10 healthy donors. The signatures of the highly differential leukocyte count (hDIF) were analyzed using multidimensional techniques. Functional capability was measured using intracellular IFN-γ staining (Trial Registration DRKS00013567). RESULTS The hDIF showed activation (subsets of T-, B-, NK- and dendritic cells) and suppression (subsets of myeloid-derived suppressor cells and T- and B-regulatory cells) of the antitumor response. Principal component analysis of PB and tumor infiltrating leukocytes (TIL) illustrated an antitumor activating gradient. TILs showed functional capability by secreting IFN-γ but did not kill HCC cells. CONCLUSIONS In conclusion, the measurement of the hDIF shows distinct differences in immune reactions against non-HBV/non-HCV HCC and illustrates an immunosuppressive gradient toward peripheral blood. TRIAL REGISTRATION DRKS00013567
    corecore