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ON SPHERICAL AVERAGES OF RADIAL BASIS FUNCTIONS

B. J. C. BAXTER

Dedicated to Arieh Iserles on the occasion of his 60th birthday.

Abstract. A radial basis function (RBF) has the general form

s(x) =

n∑
k=1

akφ(x− bk), x ∈ Rd,

where the coefficients a1, . . . , an are real numbers, the points, or centres,

b1, . . . , bn lie in Rd, and φ : Rd → R is a radially symmetric function. Such

approximants are highly useful and enjoy rich theoretical properties; see, for
instance, Buhmann [3], Fasshauer [6], Light and Cheney [11] or Wendland

[19]. The important special case of polyharmonic splines results when φ is

the fundamental solution of the iterated Laplacian operator, and this class
includes the Euclidean norm φ(x) = ‖x‖ when d is an odd positive integer, the

thin plate spline φ(x) = ‖x‖2 log ‖x‖ when d is an even positive integer, and

univariate splines. Now B-splines generate a compactly supported basis for
univariate spline spaces, but an analyticity argument implies that a nontrivial

polyharmonic spline generated by (1.1) cannot be compactly supported when
d > 1. However, a pioneering paper of Jackson [8] established that the spheri-

cal average of a radial basis function generated by the Euclidean norm can be

compactly supported when the centres and coefficients satisfy certain moment
conditions; Jackson then used this compactly supported spherical average to

construct approximate identities, with which he was then able to derive some

of the earliest uniform convergence results for a class of radial basis functions.
Our work extends this earlier analysis, but our technique is entirely novel,

and applies to all polyharmonic splines. Furthermore, we observe that the

technique provides yet another way to generate compactly supported, radially
symmetric, positive definite functions. Specifically, we find that the spheri-

cal averaging operator commutes with the Fourier transform operator, and we

are then able to identify Fourier transforms of compactly supported functions
using the Paley–Wiener theorem. Furthermore, the use of Haar measure on
compact Lie groups would not have occurred without frequent exposure to
Arieh Iserles’ study of geometric integration.

1. Introduction

A paper on radial basis functions (RBFs) might initially strike the reader as being
out of place in this Festschrift, since Arieh Iserles has not worked on RBFs directly.
However, his influence on generations of Cambridge numerical analysis researchers
has been enormous. In particular, the RBF research of Michael Powell’s group
has been greatly enhanced by Arieh’s breadth of knowledge and encouragement.
In this note, I demonstrate that the Fourier transform of a RBF, viewed as a
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2 B. J. C. BAXTER

tempered distribution, possesses a certain natural form, which results from the
fundamental fact that the spherical averaging operator commutes with the Fourier
transform operator. This fact, in itself a nontrivial result, will be established using
an alternative definition of spherical averaging obtained via Haar measure on the
orthogonal group. We then apply the Paley-Wiener theorem, which characterizes
the Fourier transforms of compactly supported distributions as entire functions
of exponential type, from which certain moment conditions emerge quite naturally.
These topics are particularly relevant to this Festschrift, since it is very much Arieh’s
influence on my mathematical development which is here evident, from the theory
of Lie groups to classical complex analysis.

A radial basis function has the general form

(1.1) s(x) =
n∑
k=1

akφ(x− bk), x ∈ Rd,

where the coefficients a1, . . . , an are real numbers, the points, or centres, b1, . . . , bn
lie in Rd, and φ : Rd → R is a radially symmetric function. Such approximants are
highly useful and enjoy rich theoretical properties; see, for instance, Buhmann [3]
or Light and Cheney [11]. The approximation theory community began to study
RBFs during the mid-1980s, following the seminal work of Micchelli [13]. In the
course of his fundamental work on the convergence properties of RBFs, Jackson [8]
discovered the following remarkable fact: if φ(x) = ‖x‖, the Euclidean norm, then
the spherical average of (1.1) is compactly supported when the dimension d is odd
and the coefficients and centres satisfy the relations

(1.2)
n∑
k=1

ak‖bk‖2` = 0, ` = 0, 1, . . . , (d− 1)/2,

the spherical average As being defined by

(1.3) As(x) =
∫
Sd−1

s(‖x‖θ) dµd(θ), x ∈ Rd,

where µd denotes normalized (d − 1)-dimensional Lebesgue measure on the unit
sphere Sd−1 in Rd. Jackson’s method was to expand the integrand of (1.3) for
large ‖x‖ and, in a tour de force of classical analysis, to identify the result as a
certain hypergeometric function, from which he was then able to deduce the com-
pact support of As when relations (1.2) hold. Jackson [8] was motivated by the
construction of approximate identities using compactly supported spherical aver-
ages of radial basis functions; an ingenious construction, although it is not our
primary interest in this paper. In contrast, the new technique presented here gen-
eralizes to any function φ : R2 → R whose (distributional) Fourier transform is
of the form φ̂(ξ) = C‖ξ‖−2m, for some positive integer m. The class of all such
functions is called the polyharmonic splines, following Madych and Nelson [12], for
any such function is the fundamental solution of an iterated Laplacian operator.
In particular, our analysis applies to the important case of thin plate splines, for
which φ(x) = ‖x‖2 loge ‖x‖, for x ∈ R2. We also remark that a minor modifi-
cation of our technique provides another way to construct compactly supported,
radially symmetric, positive definite functions (cf. [19] for further details of such
constructions).
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2. Spherical averaging via the Fourier transform

Let f : Rd → R be any continuous function. Its spherical average Af : Rd → R
is usually defined by the relation

(2.1) Af(x) =
∫
Sd−1

f(‖x‖θ) dµd(θ), x ∈ Rd,

where µd denotes normalized Haar probability measure on the unit sphere Sd−1 =
{x ∈ Rd : ‖x‖ = 1}; in other words, µd denotes ordinary (d − 1)-dimensional
Lebesgue measure scaled by the (d − 1)-dimensional measure of the unit sphere
Sd−1. Spherical averages have long had important applications in the theory of
partial differential equations, as exemplified by the elegant monograph of John
[9]. However, our calculations will be greatly simplified by use of the following
equivalent definition.

Definition 2.1. Let f : Rd → R be any continuous function. The spherical average
Af : Rd → R can also be defined by the equation

(2.2) Af(x) =
∫
O(d)

f(Ux) dσd(U), x ∈ Rd,

where O(d) denotes the orthogonal group, that is,

O(d) = {V ∈ Rd×d : V TV = I},
and σd denotes the normalized Haar probability measure on O(d).

Haar measure σd on the compact metric group O(d) is the unique measure possess-
ing the invariance property

(2.3) σd(Y ) = σd(QY ) = σd(Y Q),

for any Borel subset Y ⊂ O(d) and any Q ∈ O(d), and further properties, together
with an illuminating rigorous construction, may be found in the early chapters
of Milman and Schechtman [14]. It may be easily checked that (2.3) implies the
equivalence of (2.1) and (2.2).

Now Haar measure is, perhaps, somewhat unfamiliar to our audience, let us
mention some salient facts for the convenience of the reader. We shall say that M ∈
Rn×n is a Gaussian random matrix if its elements are independent Gaussian random
variables with mean zero and unit variance; see, for instance, Baxter and Iserles [2]
or Edelman and Raj Rao [5]. If we calculate the QR factorization of this Gaussian
random matrix M = QR, where Q ∈ Rn×n is orthogonal and R ∈ Rn×n is upper
triangular with positive diagonal entries, then Q is a (non-Gaussian) random matrix
that is uniformly generated with respect to Haar measure on O(d). Thus, generating
N such orthogonal matrices Q1, . . . , QN in this way, we can approximately integrate
any continuous function f : O(d)→ R via the Monte Carlo sum∫

O(d)

f(Q)σd(Q) ≈ N−1
N∑
k=1

f(Qk),

and the integral over the orthogonal group is the limit of this sum as N →∞.
All of the radial basis functions currently studied are continuous functions of

at most polynomial growth, and their analysis makes great use of the Schwartz
theory of tempered distributions. Our notation is fairly standard and follows that
of Friedlander and Joshi [7] and Rudin [17]. In particular, we let S(Rd) denote the
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vector space of infinitely differentiable real-valued functions whose every derivative
has supra-algebraic decay. This vector space becomes a locally convex topological
vector space in the usual way, its dual S′(Rd) being the vector space of tempered
distributions. In particular, every continuous function ψ : Rd → R of polynomial
growth is a tempered distribution, and its action on S(Rd) is given by the integral
relation

(2.4) 〈ψ, f〉 =
∫

Rd

ψ(x)f(x) dx, f ∈ S(Rd).

Further, the Fourier transform f̂ of f ∈ S(Rd) is defined by

f̂(ξ) =
∫

Rd

f(x) exp(−iξTx) dx, ξ ∈ Rd,

and the Fourier transform operator F : f 7→ f̂ defines a linear bijection F : S(Rd)→
S(Rd). The inverse Fourier transform is then given by the integral

f(x) = (2π)−d
∫

Rd

f̂(ξ) exp(iξTx) dξ, x ∈ Rd,

and the Fourier transform is defined on the dual space S′(Rd) by the requirement
that

〈Fψ, f〉 = 〈ψ, Ff〉,
for any f ∈ S(Rd) and ψ ∈ S′(Rd). We refer the reader to Rudin [17] for further
exposition.

Theorem 2.1. The spherical averaging operator A and the Fourier transform op-
erator F commute when applied to elements of the space S(Rd), that is we have the
commutative diagram

S(Rd) A−−−−→ SR(Rd)

F

y F

y
S(Rd) A−−−−→ SR(Rd)

where SR(Rd) denotes the subspace of radially symmetric functions in S(Rd).

Proof. Applying Fubini’s theorem yields the equations

Âf(ξ) =
∫

Rd

(∫
O(d)

f(Ux) dσd(U)
)

exp(−iξTx) dx

=
∫
O(d)

(∫
Rd

f(Ux) exp(−iξTx) dx
)
dσd(U)

=
∫
O(d)

f̂(Uξ) dσd(U)

= Af̂(ξ).(2.5)

Thus F (Af) = A(Ff), for any f ∈ S(Rd). Finally, the well-known fact that the
Fourier transform of any radially symmetric function is itself radially symmetric
implies that F maps SR(Rd) into itself.

�
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The tempered distributional definition of the spherical averaging operator is
defined via its action on S(Rd), that is

〈Aψ, f〉 := 〈ψ,Af〉, f ∈ S(Rd), ψ ∈ S′(Rd).
Now the Fourier transform is also defined on S′(Rd) via its action on S(Rd). More
precisely, we have

〈Fψ, g〉 = 〈ψ, Fg〉, g ∈ S(Rd),
for any ψ ∈ S′(Rd). We use the same trick to extend the definition of our spherical
averaging operator A to S′(Rd), that is

〈Aψ, g〉 = 〈ψ,Ag〉, g ∈ S(Rd).

Theorem 2.2. The spherical averaging operator A and the Fourier transform op-
erator F commute when applied to tempered distributions, that is, we obtain the
commutative diagram

S′(Rd) A−−−−→ S′R(Rd)

F

y F

y
S′(Rd) A−−−−→ S′R(Rd)

where S′R(Rd) denotes the subspace of rotation-invariant tempered distributions.

Proof. This is merely diagram chasing:

〈AFψ, g〉 = 〈Fψ,Ag〉 = 〈ψ,F (Ag)〉 = 〈ψ,A(Fg)〉 = 〈Aψ,Fg〉 = 〈F (Aψ), g〉.
�

3. Spherically averaging radial basis functions

Theorem 3.1. Let φ : Rd → R be a radially symmetric continuous function of
polynomial growth and define

s(x) =
n∑
k=1

akφ(x− bk), x ∈ Rd.

Then

(3.1) Âs(ξ) = φ̂(ξ)
n∑
k=1

akΩd(‖bk‖‖ξ‖), ξ ∈ Rd,

where Ωd : R→ R is defined by

(3.2) Ωd(t) = µ̂d(tu), t ∈ R,

for any fixed unit vector u ∈ Rd. Thus Ωd is essentially the Fourier transform of
the Haar probability measure on the sphere.

Proof. Since φ is a tempered distribution, we deduce

ŝ(ξ) = φ̂(ξ)
n∑
k=1

ak exp(−ibTk ξ), ξ ∈ Rd,

and we recall that φ̂ is a radially symmetric function. Now, the spherical average
of the exponential

Eb(ξ) := exp(ibT ξ), ξ ∈ Rd,
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is the radially symmetric function defined by the integral

AEb(ξ) =
∫
Sd−1

exp(i‖ξ‖bT θ)dµd(θ).

Since we may rotate the coordinate system without modifying the value of this
integral, we deduce

AEb(ξ) =
∫
Sd−1

exp(i‖ξ‖‖b‖uT θ)dµd(θ),

where u can be any unit vector. Thus we have

AEb(ξ) = Ωd(‖b‖‖ξ‖), ξ ∈ Rd,

and the spherical average is given by

Âs(ξ) = φ̂(ξ)
n∑
k=1

akΩd(‖bk‖‖ξ‖).

�

We shall need the Paley-Wiener theorem in the form given by Rudin [17] and
provide some background material for the reader.

Definition 3.1. A continuous function f : Cd → C is said to be an entire function
(of several complex variables) if the maps

{z 7→ f(a1, . . . , aj−1, z, aj+1, . . . , ad) : z ∈ C}

are entire functions (of one complex variable) for any complex numbers a1, . . . , ad
and 1 ≤ j ≤ d.

Theorem 3.2 (Paley–Wiener). If µ is a signed measure on Rd supported by {x ∈
Rd : ‖x‖ ≤ r}, then its Fourier transform µ̂ is an entire function of exponential
type r, that is

µ̂(z) ≤ C exp(r| Im z|), z ∈ Cd,
for some constant C. Every entire function of exponential type r arises in this way.

Proof. This is Theorem 7.22 of Rudin [17]. �

The definition is a special case of Rudin [17], Definition 7.20, and

|Im z| :=
(
(Im z1)2 + · · ·+ (Im zd)2

)1/2
, z = (z1, . . . , zd) ∈ Cd.

We have used the fact that a compactly supported distribution ψ of order zero
can be identified with a signed measure. Indeed, we have the inequality |ψ(f)| ≤
C‖f‖∞ for every continuous function f : K → R, where K denotes the compact
set supporting ψ. Thus ψ is a continuous linear functional on (C(K), ‖ · ‖∞), and
the Riesz representation theorem allows us to identify ψ with a measure µ via the
formula

ψ(f) =
∫
K

f(x) dµ(x), f ∈ C(K).

We observe that Ωd is therefore an entire function of exponential type 1, because
of (3.2). Further, since the Fourier transform of a rotation-invariant measure is
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radially symmetric, we deduce that Ωd is an even function. Hence its Taylor series
takes the form

(3.3) Ωd(z) =
∞∑
`=0

c
(d)
` z2`, z ∈ C.

Further, it can be shown that

Ωd(t) = Γ(d/2)(2/t)(d−2)/2J(d−2)/2(t);

see equation (1.8) of Schoenberg [18] or Section 41 of Donoghue [4]. Since not all
readers will be fans of Bessel functions, let us mention that using spherical polar
coordinates provides the alternative formula for Ωd is

Ωd(t) =
f̂d(t)

f̂d(0)
, t ∈ Rd,

where fd : R→ R is the compactly supported univariate function given by

fd(x) =

{
(1− x2)(d−3)/2 for |x| ≤ 1,
0 otherwise.

Theorem 3.3. Let φ : Rd → R be a polyharmonic spline, that is, a tempered
distribution whose Fourier transform takes the form

(3.4) φ̂(ξ) = C‖ξ‖−2m, ξ ∈ Rd \ {0},
for some positive integer m. Then the spherical average As of

(3.5) s(x) =
n∑
k=1

akφ(x− bk), x ∈ Rd.

is compactly supported if and only if

(3.6)
n∑
k=1

ak‖bk‖2` = 0, for ` = 0, 1, . . . ,m− 1.

Proof. We have

Âs(ξ) = C‖ξ‖−2m
n∑
k=1

akΩd(‖bk‖‖ξ‖)

= C‖ξ‖−2m
n∑
k=1

ak

∞∑
`=0

c
(d)
` ‖bk‖

2`‖ξ‖2`

= C‖ξ‖−2m
∞∑
`=0

c
(d)
` ‖ξ‖

2`
( n∑
k=1

ak‖bk‖2`
)

=: C‖ξ‖−2mg(ξ).(3.7)

Thus Âs is an entire function of exponential type 1 if and only if the entire function
g possesses a zero at the origin of order 2m, so cancelling the pole of order 2m.
Therefore we deduce that Âs is an entire function of exponential type, and hence
As is compactly supported, if and only if the first 2m coefficients of the Taylor
series of g vanish, that is,

n∑
k=1

ak‖bk‖2` = 0, ` = 0, 1, . . . ,m− 1.
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�

Finally, we observe that an easy modification of the above construction yields
another way to construct compactly supported positive definite functions. Indeed,
if we define s : Rd → R by (3.5) and (3.6), then the convolution of its spherical
average with itself, that is,

ψ(x) = (As) ∗ (As)(x), for x ∈ Rd,

is a compactly supported radially symmetric function. Further, it is also a positive
definite function, since its Fourier transform satisfies ψ̂(ξ) = |φ̂(ξ)|2, for all ξ ∈ Rd.
Furthermore, if we add the extra moment condition

(3.8)
n∑
k=1

ak‖bk‖2m 6= 0,

then we deduce that ψ̂(0) > 0, which implies that it is a strictly positive definite
function.

4. Applications

We shall now address the important special cases of the Euclidean norm φ(x) =
‖x‖, for x ∈ Rd and d odd, and the thin plate spline φ(x) = ‖x‖2 loge ‖x‖, for x ∈ Rd
and d even, for which we first establish that these are, indeed, polyharmonic radial
basis functions. It is usual to refer the reader to standard texts such as Jones [10] for
the explicit formulae giving the Fourier transforms of these tempered distributions.
However, we prefer to sketch a simple derivation based on the Schoenberg theory
of positive definite functions for completeness. Further details are given in the
excellent textbooks Fasshauer [6] and Wendland [19].

The following integrals occur in almost all calculations of this form.

Lemma 4.1. Define

(4.1) I(λ, µ) =
∫ ∞

0

e−λ/tt−µ dt, for λ > 0, µ > 1.

Then

(4.2) I(λ, µ) =
Γ(µ− 1)
λµ−1

.

Proof. We simply set τ = λ/t; the convergence of the integrals is elementary. �

Lemma 4.2. We have

(4.3)
n∑

j,k=1

yjyke
−t‖xj−xk‖2 = (2π)−d

∫
Rd

∣∣∣ n∑
k=1

yke
ixT

k ξ
∣∣∣2(π/t)d/2e−‖ξ‖

2/4t dt.

Proof. Simply apply the Fourier inversion theorem. �
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4.1. The Euclidean norm. The Euclidean norm is given by the dimension-inde-
pendent formula

(4.4) φ(x) =
∫ ∞

0

(
1− e−t‖x‖

2
)

(4π)−1/2t−3/2 dt.

We obtain this expression by setting τ = t‖x‖2 in the Gamma function integral

Γ(−1/2) =
∫ ∞

0

(
e−t − 1

)
t−3/2 dt,

which is an analytic continuation of the usual integral relation; see, for instance,
Whittaker and Watson [20], Section 12.21.

If y1, . . . , yn ∈ R satisfy
∑n
j=1 yj = 0, then (4.4) implies the relation

(4.5)
n∑

j,k=1

yjyk‖xj − xk‖ = −
∫ ∞

0

( n∑
j,k=1

yjyke
−t‖xj−xk‖2

)
(4π)−1/2t−3/2 dt.

Applying the Fourier inversion theorem to the Gaussian quadratic form and swap-
ping the order of integration (which is valid by Fubini’s theorem), we obtain

(4.6)
n∑

j,k=1

yjyk‖xj − xk‖ = (2π)−d
∫

Rd

∣∣∣ n∑
k=1

yke
ixT

k ξ
∣∣∣2ψd(ξ) dξ,

where

ψd(ξ) = −(4π)−1/2

∫ ∞
0

e−‖ξ‖
2/4t(π/t)d/2t−3/2 dt

= −(4π)−1/2πd/2I(‖ξ‖2/4, (d+ 3)/2).(4.7)

Substituting (4.2) in (4.7) yields

(4.8) ψd(ξ) = −
(2dπ(d−1)/2Γ(d+1

2 )
‖ξ‖d+1

)
.

All of this is entirely classical, which is useful when explaining Fourier transform
arguments to audiences suspicious of distribution theory1. Of course, (4.8) is the
Fourier transform of the Euclidean norm in d-dimensional space, that is,

(4.9) φ̂(ξ) = −
(2dπ(d−1)/2Γ(d+1

2 )
‖ξ‖d+1

)
.

We observe that φ̂ extends to an analytic function on Cd \ {0} when d is odd, and
φ̂ would therefore be an exponential function of exponential type were it not for its
pole at the origin, and this is the crux of our analysis. Hence Theorem 3.3 implies
that, when d is odd, the spherical average of

s(x) =
n∑
k=1

ak‖x− bk‖, x ∈ Rd,

is compactly supported if and only if
n∑
k=1

ak‖bk‖2` = 0, for ` = 0, 1, . . . , (d− 1)/2.

1The integral formula (4.9) is also derived in Baxter [1] in a more general context.
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Jackson’s construction had, as its end, the construction of an approximate identity
As, i.e. a spherical average that was compactly supported with nonzero integral.
The last condition therefore requires the further moment condition

n∑
k=1

ak‖bk‖d+1 6= 0.

4.2. The thin plate spline. We shall find it convenient to use the slightly non-
standard definition φ(x) = ‖x‖2 log ‖x‖2 for the thin plate spline. However, since
φ(x) = 2‖x‖2 log ‖x‖, there should be no confusion. The integral representation is

(4.10) φ(x) = ‖x‖2 − 1 +
∫ ∞

0

(
e−t‖x‖

2
− e−t + t(‖x‖2 − 1)e−t

)
t−2 dt.

We obtain (4.10) by setting f(t) = t log t, using the formula

f ′′(t) =
1
t

=
∫ ∞

0

e−αt dα

and integrating twice. Then φ(x) = f(‖x‖2).
If y1, . . . , yn ∈ R and x1, . . . , xn ∈ Rd satisfy

n∑
j=1

yj = 0 and
n∑
j=1

yjxj = 0,

then (4.10) implies the quadratic form relation

(4.11)
n∑

j,k=1

yjykφ(xj − xk) =
∫ ∞

0

( n∑
j,k=1

yjyke
−t‖xj−xk‖2

)
t−2 dt.

Just as before, we obtain

(4.12)
n∑

j,k=1

yjykφ(xj − xk) = (2π)−d
∫

Rd

∣∣∣ n∑
k=1

yke
ixT

k ξ
∣∣∣2ψd(ξ) dξ,

where

(4.13) ψd(ξ) =
∫ ∞

0

(π/t)d/2e−‖ξ‖
2/4tt−2 dt = πd/2I(‖ξ‖2/4, 2 + d/2).

Thus

(4.14) ψd(ξ) =
2d+2πd/2Γ(1 + d/2)

‖ξ‖d+2
.

As for the Euclidean norm, this is the Fourier transform of φ in d-dimensional space.
For example

(4.15) ψ2(ξ) =
16π
‖ξ‖4

.

We observe that, when the dimension d is even, φ̂ would again be an entire function
of exponential type were it not for the pole at the origin. Hence Theorem 3.3 implies
that, for even dimension d,

s(x) =
n∑
k=1

ak‖x− bk‖2 loge ‖x− bk‖, x ∈ Rd,
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has a compactly supported spherical average if and only if the moment conditions
n∑
k=1

ak‖bk‖2` = 0

are satisfied for ` ≤ d/2.
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