1,527 research outputs found

    A Peered Bulletin Board for Robust Use in Verifiable Voting Systems

    Get PDF
    The Web Bulletin Board (WBB) is a key component of verifiable election systems. It is used in the context of election verification to publish evidence of voting and tallying that voters and officials can check, and where challenges can be launched in the event of malfeasance. In practice, the election authority has responsibility for implementing the web bulletin board correctly and reliably, and will wish to ensure that it behaves correctly even in the presence of failures and attacks. To ensure robustness, an implementation will typically use a number of peers to be able to provide a correct service even when some peers go down or behave dishonestly. In this paper we propose a new protocol to implement such a Web Bulletin Board, motivated by the needs of the vVote verifiable voting system. Using a distributed algorithm increases the complexity of the protocol and requires careful reasoning in order to establish correctness. Here we use the Event-B modelling and refinement approach to establish correctness of the peered design against an idealised specification of the bulletin board behaviour. In particular we show that for n peers, a threshold of t > 2n/3 peers behaving correctly is sufficient to ensure correct behaviour of the bulletin board distributed design. The algorithm also behaves correctly even if honest or dishonest peers temporarily drop out of the protocol and then return. The verification approach also establishes that the protocols used within the bulletin board do not interfere with each other. This is the first time a peered web bulletin board suite of protocols has been formally verified.Comment: 49 page

    Privacy-Preserving Electronic Ticket Scheme with Attribute-based Credentials

    Get PDF
    Electronic tickets (e-tickets) are electronic versions of paper tickets, which enable users to access intended services and improve services' efficiency. However, privacy may be a concern of e-ticket users. In this paper, a privacy-preserving electronic ticket scheme with attribute-based credentials is proposed to protect users' privacy and facilitate ticketing based on a user's attributes. Our proposed scheme makes the following contributions: (1) users can buy different tickets from ticket sellers without releasing their exact attributes; (2) two tickets of the same user cannot be linked; (3) a ticket cannot be transferred to another user; (4) a ticket cannot be double spent; (5) the security of the proposed scheme is formally proven and reduced to well known (q-strong Diffie-Hellman) complexity assumption; (6) the scheme has been implemented and its performance empirically evaluated. To the best of our knowledge, our privacy-preserving attribute-based e-ticket scheme is the first one providing these five features. Application areas of our scheme include event or transport tickets where users must convince ticket sellers that their attributes (e.g. age, profession, location) satisfy the ticket price policies to buy discounted tickets. More generally, our scheme can be used in any system where access to services is only dependent on a user's attributes (or entitlements) but not their identities.Comment: 18pages, 6 figures, 2 table

    Secure and Verifiable Electronic Voting in Practice: the use of vVote in the Victorian State Election

    Full text link
    The November 2014 Australian State of Victoria election was the first statutory political election worldwide at State level which deployed an end-to-end verifiable electronic voting system in polling places. This was the first time blind voters have been able to cast a fully secret ballot in a verifiable way, and the first time a verifiable voting system has been used to collect remote votes in a political election. The code is open source, and the output from the election is verifiable. The system took 1121 votes from these particular groups, an increase on 2010 and with fewer polling places

    Managing LTL properties in Event-B refinement

    Get PDF
    Refinement in Event-B supports the development of systems via proof based step-wise refinement of events. This refinement approach ensures safety properties are preserved, but additional reasoning is required in order to establish liveness and fairness properties. In this paper we present results which allow a closer integration of two formal methods, Event-B and linear temporal logic. In particular we show how a class of temporal logic properties can carry through a refinement chain of machines. Refinement steps can include introduction of new events, event renaming and event splitting. We also identify a general liveness property that holds for the events of the initial system of a refinement chain. The approach will aid developers in enabling them to verify linear temporal logic properties at early stages of a development, knowing they will be preserved at later stages. We illustrate the results via a simple case study

    The Needle is Moving in CA K-8 Science: Integration with ELA, Integration of the Sciences, and Returning Science as a K-8 Core Subject

    Get PDF
    This first EII evaluation publication discusses one of the major shifts above, namely the shift to integrated instruction. The integration of science and ELA is the focus of one section, and the integration of the science disciplines (i.e., earth/space, life, and physical) inherent in the MS Integrated Model is the focus of the second. Also discussed at length in this publication is a fundamental shift that is not listed above, but is equally, if not more, important: the need to teach science in the first place. In order for any of the targeted shifts to take place, teachers must devote time to teaching science on a regular basis

    Revisiting Content Availability in Distributed Online Social Networks

    Get PDF
    Online Social Networks (OSN) are among the most popular applications in today's Internet. Decentralized online social networks (DOSNs), a special class of OSNs, promise better privacy and autonomy than traditional centralized OSNs. However, ensuring availability of content when the content owner is not online remains a major challenge. In this paper, we rely on the structure of the social graphs underlying DOSN for replication. In particular, we propose that friends, who are anyhow interested in the content, are used to replicate the users content. We study the availability of such natural replication schemes via both theoretical analysis as well as simulations based on data from OSN users. We find that the availability of the content increases drastically when compared to the online time of the user, e. g., by a factor of more than 2 for 90% of the users. Thus, with these simple schemes we provide a baseline for any more complicated content replication scheme.Comment: 11pages, 12 figures; Technical report at TU Berlin, Department of Electrical Engineering and Computer Science (ISSN 1436-9915
    • …
    corecore