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Abstract—Online Social Networks (OSN) are among the most
popular applications in today’s Internet. Decentralized online
social networks (DOSNs), a special class of OSNs, promise
better privacy and autonomy than traditional centralized OSNs.
However, ensuring availability of content when the contentowner
is not online remains a major challenge.

In this paper, we rely on the structure of the social graphs
underlying DOSN for replication. In particular, we propose that
friends, who are anyhow interested in the content, are used to
replicate the users content. We study the availability of such
natural replication schemes via both theoretical analysisas well
as simulations based on data from OSN users. We find that the
availability of the content increases drastically when compared
to the online time of the user, e. g., by a factor of more than 2 for
90% of the users. Thus, with these simple schemes we provide a
baseline for any more complicated content replication scheme.

I. I NTRODUCTION

Online social networks (OSNs) successfully claimed their
place among the most popular Internet services. Despite their
success, OSNs controlled by a single entity raise issues in
terms of privacy of content and communication. To address
these issues, recent works [1]–[3] have proposed decentral-
ized online social networks (DOSNs), providing privacy and
autonomy.

Privacy of user content involves two different aspects: the
access to the data and the storage/replication of the data.
Access to the data can be restricted through encryption [2],
without requiring trust between the owner of the data and
the intermediaries who store it. Where to store the data in
decentralized systems is generally solved by having an external
storage system in charge of keeping replicas of the data, for
example through a distributed file system [4], [5].

The main challenge in decentralization comes from guaran-
teeing availability of the data when the owner of the data is not
online [6]. Availability has been studied in P2P file-sharing [7],
[8] and distributed file systems [4], [5]. File sharing is driven
by popularity of content instead of social relations. Most
P2P and distributed file systems introduce significant overhead
when replicating data to achieve high availability, without
sacrificing high scalability.

Almost all existing DOSN approaches rely on external
storage services and therefore do not study content availability.
Those DOSNs which do not rely on external storage amount
to exactly one, i.e. PeerSoN [9] which proposes to use storage

provided by a user’s friends. In this paper, we study availability
in such DOSNs that do not rely on external storage and rather
exploit the social graph of a user. As direct social friends are
interested in a user’s content, they will store it as an effect of
their interest. Contrary to existing data replication schemes that
incur computation and communication overhead, our implicit
content replication scheme avoids this overhead.

Given the lack of explicit replication of our strategy, one
may expect that the resulting availability of a user’s data is
very limited. We show in this paper that despite the limited
replication provided by our strategy, the availability of content
is relatively high. Furthermore, we show that by allowing
a limited fraction of the users to be always online, e. g.,
by utilizing their own home gateway or an external storage
service, the content availability is comparable to existing
OSNs.

This paper makes the following contributions:

• Using network traces, we study and model the connection
patterns of today’s OSN users.

• Based on these results, we simulate and analyze the
performance of our replication scheme. Results show that
friend-only replication allows a surprisingly good content
availability.

• We study the impact of users being always online and
show that already a small fraction leads to high overall
content availability.

The remainder of this paper is structured as follows. In
Section II we present our notion of DOSNs, and introduce our
replication schemes and metrics. In Section III, we provide
an analytical model of the availability of our schemes. We
present our simulation approach and our models for session
characteristics in Section IV, before we discuss our simulation
results in Section V. We discuss related work in Section VI
and conclude in Section VII.

II. OUR DOSN CONCEPT AND EVALUATION STRATEGY

We first describe our concept of a Distributed Online Social
Network (DOSN) and define some terminology. Then we
present the content replication schemes we evaluate in this
paper and describe our availability metrics.



A. Terminology and System Description

DOSN users can engage in social relations with other users,
e. g., online friendship, follow another’s activity, or subscribe
to status updates. Independent of the type of social relation that
connects two users, we call themfriendsand their relationship
friendship. The entirety of users and their relationships form
the social graph of the DOSN, where users and relations
correspond to nodes and links, respectively. A user’s data—
the user’scontent—can be seen as the digital representation
of a user, which is stored on a computing device and can
be transmitted from one device to another. Thecontentcan
contain information on location, work, education, interests,
photos or status updates. Each user regularly produces such
content, that she is eager to share with her friends with the
help of the DOSN. We do not make any assumption on the
type of data exchanged by users, but in the rest of the paper,
we assume that the time to transfer a user’s data is negligible.
Typically content in OSNs is small in size. Moreover, large
objects such as videos can be uploaded into the cloud (e.g.
YouTube) and only the link to this object is shared through
the DOSN. Thus, as we consider DOSN and not P2P file-
sharing systems, this assumption is reasonable.

We considerDOSNs in general, without limiting ourselves
to a specific implementation. Yet, we focus on cases where
there is no central server storing users’ data, e. g., PeerSon [9].
This implies that availability is a function of users beingonline
and able to serve the data of a given user.

In this paper, we concentrate on DOSN data replication
mechanisms. Therefore, we assume that the typical functions
of OSNs, such as finding online friends and bonding to them,
or creating interest groups, is ensured by another component
of the DOSN. An often discussed, typical problem in P2P sys-
tems is the so called boot strapping problem, which describes
the process and the related issues when a new node wants
to join the system. We will not discuss the boot strapping
problem in this context because it increases the complexity
a lot while giving very little insight. Note however that our
simulation does include nodes with only a few friends. Further
details on boot strapping a DOSN are discussed in [9].

OSNs are highly dynamic, users join and leave, friendships
are created and destroyed. This leads to a very complex
scenario. To reduce this complexity we examine a static
snapshot of an OSN. We do not assume that the graph is
static itself but look at it in a certain state. We believe this
simplification to be reasonable as long as the simulation time
frame is limited. Throughout our simulations we do not allow
users to join or leave, or edges to be added or removed. We
further assume that for the time of the simulation the data
does not change and because of that stays valid. In this study
we want to follow a piece of data and its distribution over
the system and the resulting availability. If the data wouldbe
changed, e.g. by adding new info, this would be equal to a
restart of one of our simulation runs.

We consider a one-to-one mapping between a user and a
node, and that the node corresponding to a user is always

a replica of this user’s data. In other words, nodes always
hold a complete copy of their user’s data. We further assume
that each user uses exactly one device. We do not consider
the case of one user using multiple devices (such as a smart-
phone and a desktop computer), nor the case of multiple users
sharing the same device (e. g., the family’s desktop computer).
The assumption that each device holds a full copy is valid,
because memory is cheap and even smart phones have a
lot of storage capacity these days. A full system to handle
different versions of data is given in [9]. This system uses
a DHT to store a) information about available versions of
the content and b) locations (i. e., which node) where each
version can be found. This way a user is not necessarily tied
to a single device. Thus, if a user utilizes multiple devicesto
access the DOSN and some device does not hold all content
or the most recent version of the content, the DOSN knows
about it. That way friends can make an informed decision to
either download outdated content or wait for fresh content.Yet,
this case might influence a user’s interaction with the DOSN
and we can neither predict nor measure the effects of such
a feature. Therefore we exclude this case from our analysis.
We do not consider shared devices for two reasons. Either
they only share data when the user is online, then there is not
differences to our “exactly-one-device”-rule. Another option
is that the device shares the data of all its users while any
of the users is online. For that case our assumptions actually
constitute a worst case.

B. Replication schemes

To improve data availability, data can be replicated on
multiple nodes. These nodes becomereplicas. Choosing good
replicas is a crucial question that has received a lot of attention
in the context of distributed file sharing. In the context of
DOSN however, one structure is by definition available: the
underlying social graph. In this paper, we build an implicit
replication strategy from this underlying social graph. The
rationale behind this strategy is the fact that social friends
are natural candidates for replicating a user’s data, as they are
interested in that person. And since memory is cheap, friends
can store a replica of an item even if they are not interested in
it. We also assume that each user takes care to backup her own
data. In case a friend’s hardware fails, the user still has the
full data set and can transmit it to her friend as soon as their
hardware works again. We study three different replication
mechanisms that constitute different ways to exploit the social
graph of a DOSN for data replication. The example in Figure 1
illustrates these replication schemes for user Alice:

R0 No replication:In this scheme, only the user provides
her own data. In other words, the data is available
only when the corresponding user is online. It is
arguably not a replication mechanism, but constitutes
a baseline for comparison of the other schemes. In
Figure 1, Alice’sR0 availability is equal to Alice’s
online time. This is the only case where it could be
a difference if a user has multiple devices. If Alice
is online with her mobile phone and adds a new data
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Fig. 1. Our replication strategy for user Alice. Bob and Charlie are
friends of Alice. Once two friends (e. g., Alice and Charlie,first arrow) are
simultaneously online they exchange their data: Charlie gets Alice’s data. In
the replication schemeR1, Bob never gets Alice’s data since they are never
online together. In replication schemeR2, Bob downloads Alice’s data from
Charlie (second arrow), which leads to a better availability.

item, this item will not be available in that moment
from her home PC. On the other side, in that moment
the home PC would probably not be online. In case it
is, synchronization mechanisms like those explained
in [9] will take care that both devices reach the same
state again.

R1 Direct replication only:In this scheme, the data is
made available by the user and her friends. To be able
to distribute user’s data, friends must obtain a copy
of this data directly from the user itself. In Figure 1,
Alice’s R1 availability is her online time, plus the
online time of Charlie after he got a copy of Alice’s
data. Since Bob and Alice were never simultaneously
online, Bob cannot replicate Alice’s data.

R2 Indirect replication:In this scheme, friends of a user
can collaborate with other friends to obtain this user’s
data when they are online. In Figure 1, Bob can in
this case get Alice’s data from Charlie, and distribute
it. Alice’s R2 availability is thus made by Alice,
Charlie after he got the copy from Alice, and Bob
after he got the copy from Charlie.

Note that if we represent the social network by its adjacency
matrix A, the links ofA0 = Id,A1 = A, andA2 correspond to
replication graphs ofR0, R1, and R2 strategies respectively,
where an edge in the replication graph represents data ex-
change. It is however important to recall that data is only
hosted by direct friends: common friends of a user might
exchange the data of this common friend, but do not host each
other’s data. For instance in Figure 1 if Bob is not Charlies’
friend, he will get Alice’s data from Charlie, but will not host
Charlie’s data. Note also that to keep this “only direct friends
are replicas rule”, strategyR2 is the best we can do.

C. Metrics: Pure availability and Friend Availability

The term availability can have many definitions in the
context of P2P and distributed systems. Definitions include

hardware failure rate, churn rate of peers, or information about
which parts of content can be downloaded from which peer. In
this study we consider content availability, i. e., which fraction
of time the data of a user is available to others in a DOSN.
The content is available when the user’s node is online, or
when a replica of the data is online.

One option to measure the availability would be to count
how many data requests are successfully answered in a real
system. This would require to model and simulate user re-
quests. Although this is possible, we refrain from doing so
because it substantially increases the simulation complexity
and duration. Moreover, it is difficult to find real-world data
that includes data request behavior and derive a good model
from it. Therefore, we rely on time-based availability metrics.

We do not consider data updates in this study. Instead we
assume that each user generates new content at some point
of the simulation. We measure availability over a day (24
hours) following the new content generation. Note, that this
also means that the only copy of the data available in the
system at the beginning is held by the user’s node. We believe
this constitutes a worst-case scenario. Consider Figure 1:The
first time Bob is online he still has not downloaded Alice’s
data. We therefore consider Alice’s data as unavailable. In
reality, Bob has probably a local copy of Alice’s older data
that he can serve as well: he just does not have the latest
update.

Here, we do consider two different types of availability. The
first one is the traditional content availability, as definedabove:
The fraction of time a piece of data is available. We refer to
it as pure availabilityor metricM1.

In the context of DOSN however, we can again exploit
the social graph. People interested in a given user’s data are
primarily her friends. Recall that any kind of OSN relationship
defines friendship. In a news service, only the followers that
subscribed to a feed will receive the content. In Facebook or
Google Plus many profiles are only shared with friends, such
that an arbitrary user cannot see the profile.

Thus, in this paper, we also measure thefriend availability
or metric M2, which is the fraction of time a user’s data is
available when her friends are online. This availability takes
into account who is interested in the data that is available.
This last availability can be seen as aconvergence metric
as once all the friends of a user have a copy of the data,
this friend availability is one, even though friends are rarely
online. Note also that pure availability can be higher than
friend availability. For instance assume Figure 1 represents
one day and Bob is Alice’s only friend. Because Alice and
Bob are never simultaneously online,M2 would be zero but
M1 corresponds to Alice’s availability.

In the remainder of this paper we refer to the combination of
the replication schemeRxand the metricMy asRxMy, e. g., the
combination of no replication and pure availability is referred
to asR0M1 and indirect replication and friend availability is
referred to asR2M2.



III. T HEORETICAL ANALYSIS OF AVAILABILITY

Data availability has already been theoretically addressed in
the context of peer-to-peer storage [10]. Despite the similarity
of making data available in peer-to-peer networks and dis-
tributed replication of OSN user data, these problems differ on
some fundamental points such as the model of replica failures.

A. Model and assumptions

Let G(V,E) be the graph modeling the OSN friendship
connectivity. We assume a discrete time model, and that
G does not vary over time. Letαi(t) be the probability
that nodei is online at timet. We assume that all nodes
have the same session characteristics:∀t,∀i ∈V,αi(t) = α(t).
The graph dynamics is captured by nodes being offline or
online. We also assume that the probability of two nodes
being connected (online) at a given timet are independent of
time: P(“i and j are online at time t”) = αi(t)α j(t) = α(t)2.
In other words connections are independent and identically
distributed. In the following,a denotes the complement ofa.

Most of the related work focuses on achieving a highly
reliable data storage system despite failures or departures of
the peers holding the data. For instance in [11], a dynamic
model is studied where peers continuously fail, and the repli-
cation rate must be adapted to compensate for these losses.
Our model on the other hand considers that friends are reliable:
they never fail nor depart from the system. Once the user data
has been replicated to all its friends, the system is converged.
The main aspect of our model is to consider that nodes can
be temporarily disconnected by being dynamically online and
offline.

1) Data availability metric: The goal of P2P storage sys-
tems is to store large amounts of data in a reliable fashion, at
low cost. Considerations such as the available disk space ofa
replica or the available bandwidth are therefore important. For
instance, some of the works on P2P systems consider the use
of error correcting codes as a mean to reduce the consumed
space while keeping the desired availability. In this work,we
assume that enough storage is available at every node.

In this paper, we are interested in the user’s data availability:
during which fraction of time is useri’s data available?
Formally, let Ai be this availability, andΩ be the measuring
period:

Ai =
1
|Ω| ∑

k∈Ω
P(i’s data is available at time k).

Given that replication is made only among directly con-
nected neighbors, the problem we address is alocal one with
respect toG. As we will see, the most relevant graph property
in our context is the out-degree of nodes, i. e., the number
of potential replicas. Other graph properties such as diameter,
connectedness or clustering do not have a major impact on
availability.

2) Converged case:We consider that a given nodei is in a
convergedstate when all its neighbors have obtained a copy of
i’s data, and are therefore able to act asi’s data replica. This
constitutes an upper bound of the availabilityAi sincei cannot
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expect more replicas. Letn be the number of neighbors of node
i. With the assumption of independence between online times,
we have

Ai ≤ P(i’s replicas are all offline) = 1− (1−α(t))n+1
.

This is the maximal availability a node withn neighbors
can hope for in our model.

3) Non-converged case:Fix nodei. Let Ni(t) be the random
variable representing the number ofi’s replica in the system
at time t (be they online or not). We haveP(Ni(0) = 1) = 1,
since the only available copy ofi’s data at time 0 is on node
i. Note thatNi(t) is strictly increasing: no replica ever deletes
a hosted user’s data. Now, assume there arek− j replicas in
the system at timet−1. Then the probability thatNi(t) = k is
the probability that exactlyj nodes became replicas at timet.
In other words, using total probability law:

P(Ni(t) = k) = ∑k−1
j=0P(Ni(t −1) = k− j) ·

P(Xt = j|Ni(t −1) = k− j). (1)

WhereXt is the random variable representing the number of
replications happening at timet. Let us expressP(Xt = j|Ni(t−



1) = k− j), the probability that exactlyj new replicas appear
at time t. Note that we need to differentiate the case where
no new replica is created at this time (j = 0) for the general
case. Assumej = 0, two reasons for this: either no replica
connected, or at least one replica was online, but no non-
replica friend connected. Thus it writes:

P(Xt = 0|Ni(t −1) = k)

= (1−α(t))k+(1−α(t))n−k∑k
p=1

(k− j
p

)

α(t)p(1−α(t))k−p

= (1−α(t))k+(1−α(t))n−k(1− (1−α(t))k)

Now assumej > 0, at least one replica is created, which also
means that at least one replica is online, and exactlyj friends
that are still not replicas connect. In the following, usingtotal
probability law, we decompose according to the numberp of
replicas that are online at timet, and use the fact that if at
least one replica is online, the number of new replicas created
is exactly the number of non-replica friends that are online:

P(Xt = j|Ni(t −1) = k− j) =

∑k− j
p=1P(Xt = j and p online replicas|Ni(t −1) = k− j)

= ∑k− j
p=1P( p online replicas|Ni(t −1) = k− j).

P(Xt = j| p online replicas andNi(t −1) = k− j)

= ∑k− j
p=1

(k− j
p

)

α(t)p(1−α(t))k− j−p.
(n−k+ j

j

)

α(t) j(1−α(t))n−k

= (1− (1−α(t))k− j)
(n−k+ j

j

)

α(t) j(1−α(t))n−k

Since we know thatP(N(0) = 1) = 1 we can then iteratively
computeP(N(t) = k).

Now that we can describe the evolution ofi’s number of
replicas over time, we can express the probability thati’s data
is available at timet: it is the complement of finding all the
available replicas offline. LetA(t) be the event “i’s data is
available at timet”. We have

P(A(t)) =
n

∑
k=0

P(Ni(t) = k)(1− (1−α(t))k). (2)

Using this relation, it is possible to numerically estimatethe
average availability of a given node over time with Monte-
Carlo simulation (code is available [12]). Figure 2 compares
the analytically derived average availability over a day with
the results of the simulation, for different online patterns. We
consider here nodes with a degreed = 22, and the probability
of a node to be online in a given time bin is drawn uniformly
at random over the day (α(t) = α). The theoretical maximum
availability, i. e., the availability achieved in the converged
case, is also plotted. The gap between the maximal availability
and both analysis and simulations of convergence decreasesas
the average online time increases. This confirms the intuition
that the more often nodes are online, the faster the converged
situation is reached, i. e., all potential replicas have a copy of
the data.

Figure 3 presents the average availability of nodes as a
function of their average online time for various node degrees.
The point (x= 0.2,y= 0.65) on the lower (blue) curve shows
that according to our analysis, nodes with 6 neighbors being

TABLE I
SUMMARY OVER RELATIONSHIP GRAPHS

Name #Nodes avg.
Degree Distribution

G-STUDIVZ 1.04 M 22.24 Weibull (0.9; 22.5)G-SYNSTUDIVZ-N N 24.12

G-TWITTER 51.22 M 41,71 Power-law (2.25; 41)G-SYNTWITTER-N N 41

G-REGULAR-N-D N D N nodes w/ degreeD

online with 20% probability in each time bin have on average
65% availability. This illustrates the strong impact of node
degree on availability: nodes with 30 neighbors need to be
online nearly 3 times less to achieve the same availability,
and can expect more than 97% availability with 20% online
time.

IV. SIMULATION METHODOLOGY

We evaluate DOSN content availability for different graphs
and user online patterns. In this section, we describe the
friendship graphs used, explain how we model the session
characteristics of DOSN users, and present the simulation
procedure.

A. Social Graphs and their Node Degree Distribution

As shown in Section III, the availability of content depends
strongly on the social graph, especially its node degree dis-
tribution. For this study we use relationship graphs from two
well-known OSNs, as well as synthetically generated graphs.
The synthetic graphs allow us to explore social graphs with
different average node degrees as well as the influence of graph
size. Table I summarizes the relationship graphs we use in this
study.

Regarding the real-world graphs, we use graphs derived
from crawls by Fritsch [13] for the G-STUDIVZ graph and
Cha et al. [14] for the G-TWITTER graph. StudiVZ is a popular
Facebook like OSN for German speaking students. While
G-STUDIVZ is symmetric due to reciprocal friendships, G-
TWITTER is asymmetric. Being a follower is a unidirectional
relation.

The Twitter dataset includes a link from userA to user
B, when the crawl revealed thatA follows B. This notion
of edge direction is contrary to ours. We consider edges to
point in the direction in which content is transferred: Fromthe
content originator to the friend that is interested in the data.
In Twitter content flows from the followed (B) to the follower
(A). Therefore, when we want to use the Twitter dataset we
need to consider the distribution of in-degrees, instead ofout-
degrees.

Both of these graphs have more than a million nodes, G-
TWITTER has 50 million. Running simulations with that many
nodes is not feasible when exploring all our combinations of
simulation parameters. In order to reduce the computation time
we synthetically generate smaller graphs (e. g., 100,000 nodes)



TABLE II
SUMMARY OVER SESSION CHARACTERISTICS

Name Durations Arrivals/bin Sessions
per day

Q1 median mean Q3 fitted Model low high

P-FACEBOOK 0m37s 6m30s 69m 52m Weibull (0.4; 1284)[s] -97 % +107 % 2.5
P-RADIUS w/o always-on 3m10s 5m16s 50m 19m Weibull (0.35; 550)[s] -52 % +44 % 4.5
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Fig. 4. CCDF of node degree distributions of the graphs used.Axis are
cutoff at 100.000 nodes for increase comparability with thesyntetic graphs.

that follow the same node degree distribution as the real-world
graphs, using thegengraph tool by Viger and Latapy [15].

To produce the input degree distributions forgengraph, we
fit the G-STUDIVZ degrees with a Weibull distribution with
shape 0.9 and scale 22.5. For Twitter’s in-degrees we fit a
power-law distribution withα = 2.25 and a mean of 41, using
the node degree distribution generatordistrib, which is part
of gengraph. We validate our fitting through Kolmogorov-
Smirnov (KS) tests as well as visual inspection (Figure 4).
For comparison, we also generate regular graphs, i. e., graphs
where each node has the same degree, withgengraph. We
use these graphs to study the impact of different (average)
node degrees and in contrast to the heavy-tailed real-world
distributions.

In our simulations we do not consider that the underlying
social graphs are changing. However, as users go online and
offline the graph of active users is highly dynamic. We char-
acterize and model these changes in the following subsection.

B. Session characteristics

For our time-based simulations, it is important to reproduce
the session characteristics of DOSN users. Although we were
able to get access to relationship graphs from real-world OSNs,
there are no publicly available models of session durations
and arrivals for those graphs. Therefore, we rely on two
types of session characteristics derived from data gathered
in the aggregation network of a large European ISP. First,
we consider session characteristics of Facebook sessions ob-
served from about 2,000 users (P-FACEBOOK), see Schneider
et al. [16] for details on the dataset and a study of popular

user interactions with OSNs. Second, we consider DSL session
characteristics (P-RADIUS) from about 20,000 customers, see
Maier et al. [17] for details on the dataset.

From our DSL session data we observed that a significant
fraction (57 %) of lines are always connected, i. e., they
perform an automatic reconnect upon disconnects from the
ISP. The exact fraction heavily depends on the (default)
configuration of the DSL router, and is subject to change
depending on the set of services provided by the ISP, e. g.,
a VoIP customer DSL line should be always connected. We
choose to filter out those sessions and instead use a parameter
in the simulations denoting the fraction of always-on nodes.

Because the number of users for which we observed the
session characteristics does not match with the sizes of our
social graphs, we need to determine a session model that can
scale with the number of users. For each session we identify
the login and logout timestamps and model the sessionstart
timesanddurations. Our session start time model accounts for
time of day effects. We model the arrivals using a modulated
Poisson process with 20-minute bins. In each bin the rate is
modulated according to the observed probability that a session
is starting in that bin.

We did not observe a strong correlation between the ses-
sion’s start time (of day) and its duration. Pearson’s correlation
coefficient is −0.28 and −0.06 for P-FACEBOOK and P-
RADIUS, respectively. Therefore, we model the session dura-
tions independently from the session start times, using Weibull
distributions. Again we validate the fittings using KS tests.

Table II summarizes the session characteristics observed.
We show the mean durations as well as the median, together
with the fitted distributions. Note that for P-RADIUS the
statistics and the model only correspond to those DSL lines
which are not permanently connected (referred to as ”w/o
always-on”). In addition, we show the deviation from the
average number of arrivals per bin and number of sessions
per user per day.

C. Simulation setup

Our simulation takes three parameters:(i) the social graph,
(ii) the session characteristics, and(iii) a configuration that
determines the duration of the experiment and the time period
considered to compute the availability metrics.

First we select a social graph which in turn definesN, the
number of nodes/users in the DOSN, and the node degree
distribution as described in Section IV-A.

Second, we select one of the two session models from
Section IV-B, and generate a (possibly empty) set of presence
times for each of theN nodes of the graph. A presence time
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Fig. 5. Comparing G-STUDIVZ and synthetic graphs of varying size, using
P-FACEBOOK and R2M1: Using small synthetic graphs is viable.

consists of the start and end time of an online session. In
addition to the session model, the online times of users depend
on the fractionP of nodes that are always connected. Note that
the session models include time-of-day effects, that is nodes
are online and offline depending on the time of day. Further
the process used to generate the sessions randomly applies
different sessions to all users, so that two users do not have
the same on/off-pattern.

We generate a total of(1− P)× N ×∅ presence times,
where ∅ is the average number of sessions per day and
user (see Table II). This allows to compare the results for
graphs with different numbers of nodes. The session start
times follow the time-of-day modulated bins. The session end
times are produced by adding a duration drawn from the
Weibull distribution corresponding to the session model. To
keep simulation runs with the same session model comparable,
we generate one big set of session durations per model and use
them subsequently. Each session lasts for at least 5 seconds.

For the remainingP×N nodes, we set the session start time
to the beginning of the simulation and the session end time to
the end of the simulation time. Once everything is prepared we
compute the availability of each user’s content for the different
replication schemes and availability metrics in one pass.

V. SIMULATION RESULTS

In this section, we start by demonstrating that our reduced
size graphs accurately capture availability. Then, we study
the availability that can be expected from our socially-driven
replication schemes, and highlight the importance of the way
the availability metric is defined. We also discuss the impact of
different social graphs and user session models. We close this
section by assessing the improvements in availability gained
from a fraction of always-online nodes as well as considering
longer simulation periods.
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Fig. 6. Major gains in availability using replication schemes (R2,R1) over
no replication (R0) for P-FACEBOOK. R1 is only marginally worse thanR2.

A. Graph sizes do not matter

In the remainder of this paper, we present results as cumu-
lative distribution function (CDF) of the content availability
(y-axis) as a function of the fraction of nodes/users (x-axis).

Figure 5 shows the availability of G-STUDIVZ based graphs
with a P-FACEBOOK session model over 24 h simulation
time for R2M1. Before computing the CDFs, we remove all
nodes from the simulation output which never go online, and
therefore never generate any content. For all simulations this
exclusion affects around 6 % of the nodes for P-FACEBOOK

and 1 % for P-RADIUS.
Since simulating the replication process is an expensive task

in terms of computational time, we do most of the experiments
on scaled-down graphs. In Section IV-A we already showed
the match between synthetic graphs and real-world graphs
in terms of node degree distribution. In Figure 5 we now
show that also the resulting availability is very similar, cf. G-
STUDIVZ and G-SYNSTUDIVZ-1M. Moreover, scaling down
the size of the network does not affect the availability distribu-
tion either, cf. G-SYNSTUDIVZ-1K, G-SYNSTUDIVZ-10K

and G-SYNSTUDIVZ-100K.
Based on this insight, we use the synthetic graphs with

100,000 nodes for all further simulations. Using smaller
graphs significantly speeds up simulation time and thereby
allows to explore a broader variety and combination of pa-
rameters. Unless otherwise mentioned we present results for
G-SYNSTUDIVZ-100K and P-FACEBOOK for 24 h, which
serves as our baseline scenario.

B. The Gain of Replication

Next, we turn to understanding the impact of the different
replication schemes that we introduced in Section II-B. Fig-
ure 6 showsR0M1, R1M1andR2M1for our baseline scenario.
As compared toR0M1 which represents the availability of
the nodes themselves (no replication), we observe a drastic
increase in availability for both replication schemesR1 and
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Fig. 7. Availabilty of content with respect to total friendsonline time (M2)
vs. total simulation time (M1): M2 yields higher availability.

R2. While R2offers limited gains in availability for the bottom
and top 5 % of nodes ranked byR0, the vast majority (90 %)
of nodes double their availability and the median availability
is shifted from less than 5% to more that 35%—an increase by
a factor of 7. The bottom 5 % of nodes suffer from the reduced
opportunities to hand over their data, due to their own limited
online time. The top 5 % do not gain much as their own online
time is already high.

Taking a detailed look at Figure 6, we see that replication
schemesR2andR1produce very similar results. As expected,
R2has better availability compared toR1. However, the similar
results indicate that passing along content over multiple friends
does not happen often. One explanation for this is that contacts
with the data owner occur before contacts between two friends.
Indeed, increasing the simulation time to multiple days didnot
change this result.

Note that due to the small difference betweenR1andR2and
given that the restriction of allowing to copy the data only from
the originator is artificial, e. g., when relying on encryption
of content, we refrain from presenting the results forR1 in
the sequel. Further,R0 always produces the same curve for
identical presence times, which only varies for different graph
sizes and session characteristics.

C. Difference between availability metrics

So far, we looked at the availability measured in relation to
the total time of the experiment, which we defined in Section II
as our first metricM1. Our second metricM2 is the data
availability measured in relation to the online time of a user’s
friends. In Figure 7 we observe thatR2M2 is a significant
improvement overR2M1for the baseline scenario. The median
availability increases to around 60 %. This corresponds to a
30 % gain for more than 60 % of the nodes overR2M1.

However, the availability of about 8 % of nodes reduces to
zero forR2M2, cf. bottom left part of plot. Indeed, if no friend
is online at the same time as the node itself,M2 reports 0 while
M1 reports the node’s own availability. Our finding from the
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Fig. 8. Impact of graph type on availability, using P-FACEBOOK

previous subsection holds, in thatR2 is slightly better than
R1 when comparingR1M2 with R2M2 (not shown). Without
replication, M2 is still better thanM1 but by very little.
Therefore, from now on we focus onR0M1 (as reference),
as well asR2M1andR2M2whenever useful.

D. Impact of graphs types and node degree

As introduced in Section IV-A, we use different types of
graphs with different node degree distributions. In Figure8,
we present the availability of two graphs in addition to our G-
SYNSTUDIVZ-100K baseline graph: G-SYNTWITTER-100K

and G-REGULAR-100K-22. We choose the average node
degree of G-STUDIVZ (22) as node degree for the regular
graphs, to allow comparison.

G-REGULAR-100K-22 achieves the best availability, fol-
lowed by G-SYNSTUDIVZ-100K. G-SYNTWITTER-100K

has the worst availability, although it has the highest average
node degree. From this observation, we conclude that the
degree distribution is more important than the average degree
for availability. Both synthetic graphs have a lot of nodes with
only a few friends, so that their opportunities to get their
data replicated is lower. Indeed, G-SYNTWITTER-100K has
significantly more nodes with single digit node degrees than
G-SYNSTUDIVZ-100K (50 % over 35 %). The G-REGULAR-
100K-22 graph does not have nodes with zeroR2M2 avail-
ability, as nodes do not need to rely on the opportunity to meet
their one and only friend.

To study the impact of a graph’s node degree, we consider
different versions of G-REGULAR-100K-?. Besides the degree
of 22 we also used G-REGULAR-100K-10, and G-REGULAR-
100K-42. Figure 9 shows that the degree of each individual
node has an impact on the availability, although it is limited,
as can be observed through the saturation effect around 22
neighbors. WhileR2M1 is always better for higher node
degrees,R2M2is slightly worse for the top half of nodes (right
sides of plot).
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Fig. 9. Impact of node degree on availability, using P-FACEBOOK
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Fig. 10. Impact of session characteristics on availability, using G-
SYNSTUDIVZ-100K

E. Impact of session characteristics

As described in Section IV-B, we use mainly two different
distributions for the session characteristics, P-RADIUS and P-
FACEBOOK. Figure 10 compares those on G-STUDIVZ. P-
RADIUS shows higher availability forR2M1 andR2M2. Yet,
for R0M1the difference is limited. However, the gap between
the two session models is certainly bigger than the gap
between different graphs, highlighting the higher importance
of the session models compared to the graph.

The difference in availability for the replication cases,
corresponds to the expected total online time of all nodes.
As shown in Table II, the product of session per day and
average duration is higher for P-RADIUS. This matches the
expectation that a user usually is more often and longer online
in the Internet than logged in to Facebook. Obviously, a user
first needs to establish an Internet access connection before
using Facebook.

The reason why the higher total online time of P-RADIUS
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Fig. 11. Availability with X % always on nodes.

is not as pronounced in theR0M1 curve is that the median
session durations are tiny compared to the simulation duration,
e. g., 6m30s corresponds to a value of 0.0045 on the y-axis.

F. Adding always on nodes

Many DOSNs rely on external storage and consider storage
as always available. Similarly, we saw more than half (57 %) of
all P-RADIUS sessions being connected all the time. Therefore
we now explore how much we can improve availability by
replacing a fractionP of nodes with always-on nodes. This can
be achieved by running the DOSN client on a high availability
platform, e.g., their home gateway which is usually always
online, instead of their computer.

Figure 11 (legend on top) shows our baseline scenario for
P = {0,5,10,25,50,75}%. Note, the compressed curves due
to this fraction of always available nodes. Replacing only 5%
of the nodes, already increases theR2M1 availability of the
10 % top most available nodes to almost full availability.

G. Considering longer time-frames

If in addition to always-on nodes, we consider a longer
time frame until the data is requested, more contacts will
have occurred and the content is spread to more replicas.
Considering a time frame of a full week instead of 24 h, friends
(R2M2) have almost a 100 % guarantee to obtain the desired
data, as shown in Figure 12. In the most extreme case, looking
at a 7 day experiment with 75 % always on nodes, each nodes
availability is at least 80 %.

Observing such high availability we are interested in de-
termining the convergence towards this full weeks results.
Therefore, in Figure 13 we plot theR2M2 availability of
DOSN contents for each day of the week. We observe steady
but decreasing improvement on each day. Culminating in an
almost vertical curve, at the last day of the week more than
80 % of all the nodes have full availability.
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Fig. 12. Always on nodes for 7 days simulation.
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Fig. 13. Daily availability after each of the 7 days.

VI. RELATED WORK

Two major strategies have been studied for data replication
in distributed systems: replicate the whole file or replicate the
pieces of a file. Works such as [18], [19] are examples of
the first strategy. PAST [18] is a P2P file system built on top
of Pastry [20], a DHT-based system. [19] explores different
variations of the gain of replicating data to randomly chosen
hosts on data availability. [19] shows that implicit replication
that follows file popularity, as in Gnutella and BitTorrent,
is not sufficient. The second replication approach splits a
file into a pre-defined number of pieces and distributes them
across the nodes. Examples of this approach include e. g.,
[21], or [22]. [23] extensively covers the related work in this
area. Replicating the whole file and pieces of a file can be
combined, as done in OceanStore [5] that uses a combination
of different replication strategies for different data types, e. g.,
erasure codes for archiving. [10] compares the two replication
strategies and finds that erasure codes lead to better availability
than redundancy.

Availability has been studied in the context of P2P networks.
[24] explores the properties of different coding schemes and
finds that schemes which give better availability are in general
the ones that have higher maintenance cost. [7] measures and
analyzes host availability in a large structured P2P file sharing
network. They find that host availability is dependent on the
time of day, but not on other hosts. [25] confirmed the results
of [7] in Gnutella and Napster. [26] also explore Gnutella and
Napster but focus on the nature of end-hosts, and find they
are very heterogeneous, e. g., regarding access bandwidth and
their limited cooperation.

DOSNs have gained popularity in the research community
in the recent years, aimed at giving back users control over
their data. Most DOSN projects concentrate on the question of
access rights management and encryption. They rely on servers
or other external services to guarantee data availability.Others
use social links for trust but do not exploit it for DOSN data
availability. Tribler [6] is a file sharing system built on top of a
social overlay. It uses a complex replication system to ensure
the best possible availability of data. Persona [2] relies on
external storage services that can be anything from a serverto
an Amazon cloud account per user. Persona enables privacy by
introducing a fine grained system that users can use to manage
access to their data. Diaspora [3] recently obtained much
attention from the press. From the users viewpoint, Diaspora
appears to be a common server-based OSN. However, data can
be encrypted and everyone can set up a server for Diaspora,
so that availability is ensured by many distributed servers.
SuperNova [27] is an architecture for a DOSN that solves
the availability issue by relying on super-peers that provide
highly available storage.

VII. C ONCLUSION

In this paper, we proposed to exploit on the structure of the
social graphs in DOSNs, to replicate users’ content. As the
friends of a given user are interested in his content anyway,
they can be used to provide replicas of his content. Through
theoretical analysis as well as simulations based on data from
OSN users, we study this natural replication scheme. We find
that with such a replication scheme, the availability of theusers
content increases drastically, when compared to the onlinetime
of the users, e. g., by a factor of more than 2 for 90 % of the
users. Furthermore, adding a small fraction of always online
users to our scheme leads to high overall availability of users’
content.

As future work, we want to study the speed at which user
content updates propagate through the graph of DOSNs, as
well as compare our replication scheme with others that are
not purely based on the friendship graph.

We also need to leave studies to future work that look at
the overhead in terms of traffic, time, messaging generated by
a system similar to the presented one. Such a system would
need to be implemented, deployed and observed while in use
to find out about those details.
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