3,201 research outputs found

    Physics with first LHCb data

    Full text link
    The LHCb experiment is designed for hadronic flavour physics and will look for New Physics manifestations in the decay of charm and bottom hadrons abundantly produced at the LHC. All parts of the LHCb physics programme can be embarked on with the expected statistics to be collected during the first 2010-2011 physics run at s\sqrt{s} = 7 TeV. We present first preliminary results on strangeness production, and demonstrate, using the few nb-1 of already collected data, the potential for initial measurements in heavy-flavour physics.Comment: 9 pages, 7 figures, to appear in the proceedings of the "Physics at LHC 2010" conference, June 7-12, 2010, DESY, Hamburg, German

    Vanishing thetanulls and hyperelliptic curves

    Full text link
    Let Mg,2\mathcal{M}_{g,2} be the moduli space of curves of genus gg with a level-2 structure. We prove here that there is always a non hyperelliptic element in the intersection of four thetanull divisors in M6,2\mathcal{M}_{6,2}. We prove also that for all g⩾3g\geqslant3, each component of the hyperelliptic locus in Mg,2\mathcal{M}_{g,2} is a connected component of the intersection of g−2g-2 thetanull divisors.Comment: 13 page

    Adaptive multiresolution computations applied to detonations

    Full text link
    A space-time adaptive method is presented for the reactive Euler equations describing chemically reacting gas flow where a two species model is used for the chemistry. The governing equations are discretized with a finite volume method and dynamic space adaptivity is introduced using multiresolution analysis. A time splitting method of Strang is applied to be able to consider stiff problems while keeping the method explicit. For time adaptivity an improved Runge--Kutta--Fehlberg scheme is used. Applications deal with detonation problems in one and two space dimensions. A comparison of the adaptive scheme with reference computations on a regular grid allow to assess the accuracy and the computational efficiency, in terms of CPU time and memory requirements.Comment: Zeitschrift f\"ur Physicalische Chemie, accepte

    Ambiguities in gravitational lens models: impact on time delays of the source position transformation

    Full text link
    The central ambition of the modern time delay cosmography consists in determining the Hubble constant H0H_0 with a competitive precision. However, the tension with H0H_0 obtained from the Planck satellite for a spatially-flat Λ\LambdaCDM cosmology suggests that systematic errors may have been underestimated. The most critical one probably comes from the degeneracy existing between lens models that was first formalized by the well-known mass-sheet transformation (MST). In this paper, we assess to what extent the source position transformation (SPT), a more general invariance transformation which contains the MST as a special case, may affect the time delays predicted by a model. To this aim we use pySPT, a new open-source python package fully dedicated to the SPT that we present in a companion paper. For axisymmetric lenses, we find that the time delay ratios between a model and its SPT-modified counterpart simply scale like the corresponding source position ratios, Δt^/Δt≈β^/β\Delta \hat{t}/ \Delta t \approx \hat{\beta}/\beta, regardless of the mass profile and the isotropic SPT. Similar behavior (almost) holds for non-axisymmetric lenses in the double image regime and for opposite image pairs in the quadruple image regime. In the latter regime, we also confirm that the time delay ratios are not conserved. In addition to the MST effects, the SPT-modified time delays deviate in general no more than a few percent for particular image pairs, suggesting that its impact on time-delay cosmography seems not be as crucial as initially suspected. We also reflected upon the relevance of the SPT validity criterion and present arguments suggesting that it should be reconsidered. Even though a new validity criterion would affect the time delays in a different way, we expect from numerical simulations that our conclusions will remain unchanged.Comment: 15 pages, 14 figure

    The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE)

    Full text link
    We present an overview of the EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE), selected by NASA for technology development and maturation. EXCEDE will study the formation, evolution and architectures of exoplanetary systems, and characterize circumstellar environments into stellar habitable zones. EXCEDE provides contrast-limited scattered-light detection sensitivities ~ 1000x greater than HST or JWST coronagraphs at a much smaller effective inner working angle (IWA), thus enabling the exploration and characterization of exoplanetary circumstellar disks in currently inaccessible domains. EXCEDE will utilize a laboratory demonstrated high-performance Phase Induced Amplitude Apodized Coronagraph (PIAA-C) integrated with a 70 cm diameter unobscured aperture visible light telescope. The EXCEDE PIAA-C will deliver star-to-disk augmented image contrasts of < 10E-8 and a 1.2 L/D IWA or 140 mas with a wavefront control system utilizing a 2000-element MEMS DM and fast steering mirror. EXCEDE will provide 120 mas spatial resolution at 0.4 microns with dust detection sensitivity to levels of a few tens of zodis with two-band imaging polarimetry. EXCEDE is a science-driven technology pathfinder that will advance our understanding of the formation and evolution of exoplanetary systems, placing our solar system in broader astrophysical context, and will demonstrate the high contrast technologies required for larger-scale follow-on and multi-wavelength investigations on the road to finding and characterizing exo-Earths in the years ahead
    • …
    corecore