163 research outputs found

    ErbB4 regulates the timely progression of late fetal lung development

    Get PDF
    AbstractThe ErbB4 receptor has an important function in fetal lung maturation. Deletion of ErbB4 leads to alveolar hypoplasia and hyperreactive airways similar to the changes in bronchopulmonary dysplasia (BPD). BPD is a chronic pulmonary disorder affecting premature infants as a consequence of lung immaturity, lung damage, and abnormal repair. We hypothesized that proper ErbB4 function is needed for the timely progression of fetal lung development. An ErbB4 transgenic cardiac rescue mouse model was used to study the effect of ErbB4 deletion on fetal lung structure, surfactant protein (SP) expression, and synthesis, and inflammation. Morphometric analyses revealed a delayed structural development with a significant decrease in saccular size at E18 and more pronounced changes at E17, keeping these lungs in the canalicular stage. SP-B mRNA expression was significantly down regulated at E17 with a subsequent decrease in SP-B protein expression at E18. SP-D protein expression was significantly decreased at E18. Surfactant phospholipid synthesis was significantly decreased on both days, and secretion was down regulated at E18. We conclude that pulmonary ErbB4 deletion results in a structural and functional delay in fetal lung development, indicating a crucial regulatory role of ErbB4 in the timely progression of fetal lung development

    The marine isotope stage 1–5 cryptotephra record of Tenaghi Philippon, Greece:Towards a detailed tephrostratigraphic framework for the Eastern Mediterranean region

    Get PDF
    The iconic climate archive of Tenaghi Philippon (TP), NE Greece, allows the study of short-term palaeoclimatic and environmental change throughout the past 1.3 Ma. To provide high-quality age control for detailed palaeoclimate reconstructions based on the TP archive, (crypto)tephra studies of a peat core ‘TP-2005’ have been carried out for the 0–130 ka interval. The results show that the TP basin is ideally positioned to receive tephra fall from both the Italian and Aegean Arc volcanic provinces. Two visible tephra layers, the Santorini Cape Riva/Y-2 (c. 22 ka) and the Campanian Ignimbrite (CI)/Y-5 (c. 39.8 ka) tephras, and six primary cryptotephra layers, namely the early Holocene E1 tephra from the Aeolian Islands (c. 8.3 ka), the Campanian Y-3 (c. 29 ka) and X-6 tephras (c. 109.5 ka), as well as counterpart tephras TM-18-1d (c. 40.4 ka), TM-23-11 (c. 92.4 ka) and TM-33-1a (c. 116.7 ka) from the Lago Grande di Monticchio sequence (southern Italy), were identified along with repeatedly redeposited Y-2 and CI tephra material. Bayesian modelling of the ages of seven of the primary tephra layers, 60 radiocarbon measurements and 20 palynological control points have been applied to markedly improve the chronology of the TP archive. This revised chronology constrains the age of tephra TM-18-1d to 40.90–41.66 cal ka BP (95.4% range). Several tephra layers identified in the TP record form important isochrons for correlating this archive with other terrestrial (e.g., Lago Grande di Monticchio, Sulmona Basin and Lake Ohrid) and marine (e.g., Adriatic Sea core PRAD 1-2 and Aegean Sea core LC21) palaeoclimate records in the Mediterranean region

    Stable oxygen isotope records of different benthic foraminiferal species of core GeoB3004-1 from the western Arabian Sea

    No full text
    The stable isotope composition of one epifaunal and three infaunal benthic foraminiferal species of a sediment core from 1800 m water depth of the western Arabian Sea was determined to evaluate deepwater oxygenation, organic matter remineralization, and early diagenetic processes during the past 190,000 years. The d18O records reveal species-specific metabolic effects, susceptibility to changes in carbonate ion concentration, and supralysoclinal calcite dissolution. The foraminiferal d13C records reveal changes in the stable carbon isotope gradients of pore water dissolved inorganic carbon (d13CDIC) and in the microhabitat depth of infaunal species. Maximum d13CDIC offsets between bottom and pore waters ranged between mean values of 0.8 and 1.2% corresponding to estimates of deepwater oxygen concentration between approximately 1 and 2.7 ml/l. Intervals of improved deepwater oxygenation coincided with high benthic foraminiferal diversity and indicate the admixture of well-oxygenated deepwater masses during interglacials. During interglacial maxima the d13C difference between epifauna and shallow infauna indicates highest organic matter remineralization rates at times of maximum organic matter fluxes
    • 

    corecore