24 research outputs found

    Bimodal Behavior of the Kuroshio and the Gulf Stream

    Get PDF

    Statistical post-processing of wind speed forecasts using convolutional neural networks

    Get PDF
    Current statistical post-processing methods for probabilistic weather forecasting are not capable of using full spatial patterns from the numerical weather prediction (NWP) model. In this paper we incorporate spatial wind speed information by using convolutional neural networks (CNNs) and obtain probabilistic wind speed forecasts in the Netherlands for 48 hours ahead, based on KNMI's deterministic Harmonie-Arome NWP model. The probabilistic forecasts from the CNNs are shown to have higher Brier skill scores for medium to higher wind speeds, as well as a better continuous ranked probability score (CRPS) and logarithmic score, than the forecasts from fully connected neural networks and quantile regression forests. As a secondary result, we have compared the CNNs using 3 different density estimation methods (quantized softmax (QS), kernel mixture networks, and fitting a truncated normal distribution), and found the probabilistic forecasts based on the QS method to be best.Comment: 44 pages, 5 figure

    Subseasonal statistical forecasts of eastern U.S. hot temperature events

    Get PDF
    Extreme summer temperatures can cause severe societal impacts. Early warnings can aid societal preparedness, but reliable forecasts for extreme temperatures at subseasonal-to-seasonal (S2S) timescales are still missing. Earlier work showed that specific sea surface temperature (SST) patterns over the northern Pacific are precursors of high temperature events in the eastern United States, which might provide skillful forecasts at long-leads (~50 days). However, the verification was based on a single skill metric and a probabilistic forecast was missing. Here, we introduce a novel algorithm that objectively extracts robust precursors from SST linked to a binary target variable. When applied to reanalysis (ERA-5) and climate model data (EC-Earth), we identify robust precursors with the clearest links over the North-Pacific. Different precursors are tested as input for a statistical model to forecast high temperature events. Using multiple skill metrics for verification, we show that daily high temperature events have no predictive skill at long leads. By systematically testing the influence of temporal and spatial aggregation, we find that noise in the target timeseries is an important bottleneck for predicting extreme events on S2S timescales. We show that skill can be increased by a combination of (1) aggregating spatially and/or temporally, (2) lowering the threshold of the target events to increase the base-rate, or (3) add additional variables containing predictive information (soil-moisture). Exploiting these skill-enhancing factors, we obtain forecast skill for moderate heatwaves (i.e. 2 or more hot days closely clustered together in time) up to 50 days lead-time

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Calibration of ecmwf seasonal ensemble precipitation reforecasts in java (Indonesia) using bias-corrected precipitation and climate indices

    No full text
    The seasonal precipitation forecast is one of the essential inputs for economic and agricultural activities and has significant impact on decision-making. Large-scale modes of climate variability have strong relationships with seasonal rainfall in Java and are natural candidates for use as potential predictors in a statistical postprocessing application. We explore whether using climate indices as additional predictors in the statistical postprocessing of ECMWF Seasonal Forecast System 5 (SEAS5) precipitation can improve skill. We use parametric statistical postprocessing by applying a logistic distribution-based ensemble model output statistics (EMOS) technique. We add a variety of potential predictors in the analysis, namely SEAS5 raw and empirical quantile mapping (EQM) bias-corrected precipitation, Niño-3.4 index, dipole mode index (DMI), Madden–Julian oscillation (MJO) indices, sea surface temperature (SST) around Java, and several other predictors. We analyze the period of 1981–2010, focusing on July, August, September, and October. We use the continuous ranked probability skill score (CRPSS) and Brier skill score (BSS) in a comparative verification of raw, EQM, and EMOS seasonal precipitation forecasts. We have found that it is essential to use EQM-corrected precipitation as a predictor instead of raw precipitation in the latter. Besides, Niño-3.4 and DMI forecasts are not needed as extra predictors to improve monthly precipitation forecasts for the first lead month, except for September. However, for somewhat longer lead months, in September and October when there is more skill than climatology, the model that includes only Niño-3.4 and DMI forecasts as potential predictors performs about the same compared to the model that uses only EQM-corrected precipitation as a predictor

    Statistical Postprocessing of Wind Speed Forecasts Using Convolutional Neural Networks

    Get PDF
    Current statistical postprocessing methods for probabilistic weather forecasting are not capable of using full spatial patterns from the numerical weather prediction (NWP) model. In this paper, we incorporate spatial wind speed information by using convolutional neural networks (CNNs) and obtain probabilistic wind speed forecasts in the Netherlands for 48 h ahead, based on KNMI's deterministic HARMONIE-AROME NWP model. The probabilistic forecasts from the CNNs are shown to have higher Brier skill scores for medium to higher wind speeds, as well as a better continuous ranked probability score (CRPS) and logarithmic score, than the forecasts from fully connected neural networks and quantile regression forests. As a secondary result, we have compared the CNNs using three different density estimation methods [quantized softmax (QS), kernel mixture networks, and fitting a truncated normal distribution], and found the probabilistic forecasts based on the QS method to be best

    Skill improvement of dynamical seasonal Arctic sea ice forecasts

    No full text
    We explore the error and improve the skill of the outcome from dynamical seasonal Arctic sea ice reforecasts using different bias correction and ensemble calibration methods. These reforecasts consist of a five-member ensemble from 1979 to 2012 using the general circulation model EC-Earth. The raw model reforecasts show large biases in Arctic sea ice area, mainly due to a differently simulated seasonal cycle and long term trend compared to observations. This translates very quickly (1-3months) into large biases. We find that (heteroscedastic) extended logistic regressions are viable ensemble calibration methods, as the forecast skill is improved compared to standard bias correction methods. Analysis of regional skill of Arctic sea ice shows that the Northeast Passage and the Kara and Barents Sea are most predictable. These results show the importance of reducing model error and the potential for ensemble calibration in improving skill of seasonal forecasts of Arctic sea ice
    corecore