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ABSTRACT: Extreme summer temperatures can cause severe societal impacts. Early warnings can aid societal pre-

paredness, but reliable forecasts for extreme temperatures at subseasonal-to-seasonal (S2S) time scales are still missing.

Earlier work showed that specific sea surface temperature (SST) patterns over the northern Pacific Ocean are precursors

of high temperature events in the eastern United States, which might provide skillful forecasts at long leads (;50 days).

However, the verification was based on a single skill metric, and a probabilistic forecast was missing. Here, we introduce a

novel algorithm that objectively extracts robust precursors from SST linked to a binary target variable. When applied to

reanalysis (ERA-5) and climatemodel data (EC-Earth), we identify robust precursors with the clearest links over the North

Pacific. Different precursors are tested as input for a statistical model to forecast high temperature events. Using multiple

skill metrics for verification, we show that daily high temperature events have no predictive skill at long leads. By sys-

tematically testing the influence of temporal and spatial aggregation, we find that noise in the target time series is an

important bottleneck for predicting extreme events on S2S time scales.We show that skill can be increased by a combination

of 1) aggregating spatially and/or temporally, 2) lowering the threshold of the target events to increase the base rate, or

3) adding additional variables containing predictive information (soil moisture). Exploiting these skill-enhancing factors,

we obtain forecast skill for moderate heat waves (i.e., 2 or more hot days closely clustered together in time) with up to

50 days of lead time.

KEYWORDS: Atmosphere–ocean interaction; Rossby waves; Stationary waves; Atmosphere–land interaction; Forecast

verification/skill; Seasonal forecasting

1. Introduction

Subseasonal to seasonal (S2S) predictions offer society

valuable information on weather-related risk, allowing

decision-makers to initiate early warning action plans for

extreme events (WMO 2017) and to optimize resource

management (Vitart and Robertson 2018; Vitart et al.

2017). Predictability on these time scales stems from reg-

ularly varying climate phenomena or variables that are

evolving at lower temporal frequencies compared to the

regular, more chaotic, weather (Doblas-Reyes et al. 2013;

Haustein et al. 2016; Krishnamurthy 2019). This predict-

ability can be exploited by 1) initializing a dynamical

model with these slowly evolving variables such as soil

moisture, sea ice, snow cover and sea surface temperature

(Jaiser et al. 2012; Seo et al. 2019; Vitart and Robertson

2018) or 2) select low-frequency variables directly as input

for purely statistical forecasting models, using past climate

data to train them (Kretschmer et al. 2017; Cohen et al.

2018; Totz et al. 2017; Nobre et al. 2019; Alfaro et al. 2006)

3) or a combination of both (Dobrynin et al. 2018).

S2S predictability can be improved by postprocessing the

output of dynamical models, which is conventionally done

by compensating for systematic biases (Finnis et al. 2012;

Doblas-Reyes et al. 2013). Alternatively, statistical models

can be directly trained to make S2S predictions and offer

computational efficiency, flexibility, and the precursor time

series can be further analyzed to provide process informa-

tion (Runge et al. 2019). On S2S time scales, their forecast

skill can be comparable to that of dynamical models (Hall

et al. 2017). In this paper, we use the word precursor to refer

to an anomalous pattern or geographical region, while the

precursor time series refers to the time series that results

from a dimensionality reduction of this pattern or region. A

better understanding of important precursors can also help

with the (bias) correction of dynamical models, either by

using the precursors directly or by using the statistical model

to subsample only the reliable forecasting pathways of the

dynamical model output (Dobrynin et al. 2018; Strazzo

et al. 2019).

The ocean is the most important source of long-term

memory that interacts with the atmosphere (Frankignoul

1985; Kushnir et al. 2002; Kaspi and Schneider 2011;

Putrasahan et al. 2013; Thomson and Vallis 2018). The at-

mospheric response to SST anomalies (SSTA) in the tropics

is more direct and local (i.e., via thermally driven deep

convection and associated latent heat release; Kushnir et al.

2002). In the midlatitudes, the lower specific humidity

content and smaller Rossby radius of deformation hinders
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the formation of strong deep convection as seen in the

tropics, resulting in a weaker direct and local atmospheric

response to SSTA (Kushnir et al. 2002; Hewitt et al. 2017).

The midlatitude atmospheric response to a SST anomaly is

mainly driven by the adjustment to thermal wind balance and

an indirect response due to eddy feedbacks (Nie et al. 2016).

The latter makes the atmospheric response depend on the

background zonal mean climate, and thus also on the season

and location of the SSTA (Kushnir et al. 2002; Nie et al. 2016;

Putrasahan et al. 2013).

These nuances for the atmospheric response, suggest that

statistical forecasting tools should not solely rely on known

modes of variability in the climate system, often referred to as

climate indices (e.g., Hessl et al. 2004; Steptoe et al. 2018;

Nobre et al. 2019). Those indices represent spatially large-

scale, and temporally low-frequent processes. A priori, one

does not know if they contain the information that is relevant

for the target of interest. This reasoning is supported by sta-

tistical studies and dynamical model results (McKinnon et al.

2016; Deng et al. 2018).

Following this rationale, McKinnon et al. (2016) showed

that ‘‘hot day’’ events in the eastern United States are

preceded by a specific SST pattern over the Pacific Ocean.

This SST pattern [called the Pacific extreme pattern (PEP)]

was found by analyzing composite SST anomalies that co-

occurred at certain lags with heat events. The PEP pattern

is characterized by a zonally oriented tripole cold–warm–

cold pattern in the Pacific at approximately 358N, related to

the forcing and/or amplification of a Rossby wave train

(Wirth et al. 2018). The PEP was shown to outperform the

conventional climate indices, such as the Pacific decadal

oscillation (PDO) or the El Niño–Southern Oscillation

(ENSO). Using the PEP pattern, the study claimed re-

markable long-lead predictability up to 50 days lead time

for extreme events defined at the daily time scale. In their

main text, they assessed the skill of the PEP time series

using only a single validation metric (area under the rela-

tive operating characteristic). However, it is generally

recommended to use multiple skill metrics that measure

different aspects of the forecast quality to assess predict-

ability (Wilks 2011). Further, the study used a rectangular

box over the tripole SST region to define the spatial extent

of their precursor whereas a more objective SST pattern

detection tool will verify if a link with the response variable

is indeed robust and therefore might provide better physi-

cal understanding and more predictive skill (Bello et al.

2015; Kretschmer et al. 2017).

A response-guided statistical forecast tool that searches

for precursors that explain the full variability of a contin-

uous response (i.e., target) variable has been developed

already (Kretschmer et al. 2017), but consequently, it can-

not handle a binary target time series. Here, we introduce a

novel response-guided algorithm that objectively extracts

precursors that are directly related to our binary target

variable (i.e., the eastern U.S. hot-day-event time series;

section 2c). We train this algorithm on reanalysis ERA-5

and 160 years of data from the coupled ocean–atmosphere

model EC-Earth.

In this paper, we present 1) a comparison between

our response-guided algorithm and the PEP pattern of

McKinnon et al. (2016), and their relation to the relevant

climate indices (section 3b), and 2) the verification of hot-

day forecasts, thereby stressing the importance of using

multiple skill metrics (section 3c). Section 3d shows that

forecast skill can be boosted by using temporal aggrega-

tion and lower-threshold events. To enable forecasts of

events defined on a daily resolution, we no longer aggre-

gate our target time series in time, but we use a window

probability approach and we increase the signal-to-noise

ratio by increasing the domain for spatial aggregation

(section 3e). Although our focus lies on retrieving pre-

dictability from the ocean, in section 3f we also include

additional information from soil moisture, since it is

known to be a potentially important precursor of heat

waves (Seneviratne et al. 2010; Miralles et al. 2014;

Ardilouze et al. 2017).

2. Method

a. Data

Our analysis relies on data from the ERA-5 reanalysis,

1979–2018 [Copernicus Climate Change Service (C3S)

2017] and from the EC-Earth v2.3 earth system model

(coupling between ocean, atmosphere, land surface and

sea ice) (Hazeleger et al. 2012) with 160 yrs of simulated

present-day climate (van der Wiel et al. 2019). We calcu-

late the daily maximum 2-m air temperature (mx2t) in

ERA-5 (0.258 3 0.258) by calculating the daily maximum of

the ‘‘maximum 2-m temperature since previous post-

processing,’’ with a step size of 1 h. For SST in ERA-5

we use daily means on a 18 3 18 grid. We additionally

use information from ERA-5 soil moisture (18 3 18) for

the forecasts [i.e., the volumetric soil water levels of the

second (7–28 cm) and third (28–72 cm) layer of the land

surface model]. To remove the seasonal cycle and the

global warming trend (of which the strength might vary

throughout the year), all variables are linearly detrended

for each day-of-year. Because a single day-of-year across

40 years is insufficient to reliably estimate the climato-

logical mean value and trend, we apply a 25-day rolling

mean (using a Gaussian window with a standard deviation

of 12.5) to the raw ERA-5 data. From the raw data, we then

subtract climatological mean and trend based on the

smoothed data.

For EC-Earth, we use daily mean T2m and SST data

(1.1258 3 1.1258). The coupled ocean–atmosphere climate

model experiment consisted of 2000 years of simulated

present-day weather, from this we sampled 160 years for

our study. The selected years are not chronological, which

is a desired property for making good splits between

training and test data, because no interannual information

is passed from the previous to the subsequent years. For

more information on the model simulation setup, see van

der Wiel et al. (2019). For EC-Earth, the seasonal cycle

and a potential long-term trend is directly removed for each
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day-of-year (no prior smoothing), since 160 years should be

enough to reliably estimate the trend and climatological

mean value.

b. Defining the target variable and the Pacific extreme
pattern

We define our target variable following McKinnon et al.

(2016) and determine it for ERA-5 and EC-Earth based on

the detrended temperature data. The study period consists

of the climatological 60 hottest days of year, ranging from

24 June to 22 August (McKinnon et al. 2016). The target

variable is retrieved by, first, performing an objective

identification of spatial clusters within the United States,

where grid cells are clustered together if they tend to ex-

perience extreme events simultaneously. This clustering

approach is expected to increase the signal-to-noise ratio

and thereby helps to identify precursors; for more infor-

mation on the clustering, see appendix A.

1) HOT-DAY EVENTS

McKinnon et al. (2016) calculated the spatial 95th per-

centile of daily maximum temperature anomalies within the

eastern U.S. cluster. Hence, for each day, the spatial 95th

percentile of all observations was calculated, which in

practice means that each day contained the temperature

value of only a single observation. This introduces some

unwanted noise into the target time series since small-scale

processes can affect the maximum temperature at a single

observation and single moment in time. To improve the

signal-to-noise ratio and at the same time stay close to

the original definition, we calculate the spatial mean over

the 10% warmest grid cells. This way we still end up with a

very similar time series as compared with the T95 time se-

ries used by McKinnon et al. (2016) (Fig. 3, described in

more detail below). We refer to this time series as T90m in

the remainder of this article, with the lower casem referring

to the spatial mean that is calculated. The hot-day time

series (HD) is defined as

HD(t)5 1 if T90
m
. T90

m
1s

T90m

� �
else 0, (1)

with T90m being the temporal mean and sT90m being the

standard deviation of T90m. This results in a base rate of ap-

proximately 16%.

2) PEP

The PEP pattern is retrieved by taking the area weighted

SSTA composite mean of hot-day events at lag t. [The

spatial region is defined by the rectangular box as depicted

by green stippled lines in Fig. 4 (described in more detail

below); the coordinates are 208S–508N and 1458E–1308W].

The PEP time series at lag t is defined as the spatial co-

variance between the PEP pattern and the SSTA field at

each time step [SSTA(t)]:

PEP
t
(t)5

1

N
�
N

i

w
i
f[PEP

t
(t, i)2PEP

t
(t)][SSTA(t, i)2SSTA(t)]g,

(2)

where i denotes a grid cell of in total N grid cells within

the rectangular box, wi denotes the weight proportional

to the gridcell area, and the overbar denotes the spa-

tial mean.

c. Composite-based precursor pattern algorithm

This is a response-guided algorithm in the sense that it

searches for a signal that directly relates to a response (i.e.,

target) variable of interest, in this case, the hot-day time series.

It is inspired by the approach presented in McKinnon et al.

(2016), who created a composite mean of hot-day events (i.e.,

calculating the mean SSTA that co-occurred with hot-day

events at a certain lag). The null hypothesis would be that

the SSTAs are unrelated to heat-wave events, meaning that

one would be randomly sampling anomalies with respect to

climatology, which should approximate zero. However, a dis-

tinct pattern of significantly deviating SSTA was found. This

algorithm automatically infers the precursor regions based on

robust anomaly patterns in the composite mean. The algorithm

is described in step 1 and 2 (Fig. 1), and the parameters are

listed in Table 1.

DETECTING ROBUST SST PRECURSORS

Robust anomalous grid cells should (i) be insensitive to the

exclusion of a (number of) year(s) and (ii) SST anomalies

should persist through time for at least a few days. Criterion

(i) is tested by creating subsampled composite mean (SCM)

maps and setting grid cells exceeding a percentile threshold

(param 5 SCM_perc_thres; Table 1) to 1 and the rest to 0. We

iteratively remove a number of training years based on a per-

centage. If we are, for example, removing 7.5% of theNyrs (i.e.,

36 for ERA-5) training years, we delete 7.5%of 365 2.7, which

we round to 3 years. This is done Nyrs times, each time

removing a different subset while ensuring that the deleted

years are uniformly sampled, thereby avoiding that a certain

year is recurrent in many of the SCMs while others are not.

This procedure of removing a percentage is done multiple

(Nperc) times, once for each percentage in the list perc_yrs_out

(i.e., for ERA-5, the list of percentages are 5, 7.5, 10, 12.5, and

15; thus Nperc 5 5). Criterion (ii) is tested by redoing the

previous step, but then the composite dates are shifted by

ndays in time. These date shifts with respect to the composite

dates are listed in param 5 days_before. For ERA-5, date

shifts are 0, 7, and 14; thus Nshifts 5 3. In total, the sub-

sampling leads to Nyrs 3 Nperc 3 Nshifts 5 Ntot SCMs. For

ERA-5 data, Ntot is equal to 540.

Next we calculate (and normalize) the frequency for each

grid cell to obey criterion (i) and (ii), and we reject those that

are not extracted at least 80% (param5 FSP_thres) of theNtot

SCM maps. We found that using other reasonable parameter

settings lead to qualitatively the same results. To form indi-

vidual precursor regions, we use density-based spatial cluster-

ing of applications with noise (DBSCAN; Schubert et al. 2017),

which assigns separate labels to groups of adjacent robust grid

cells of the same sign (see Fig. C1 in appendix C). To achieve

this, we use the Haversine formula as the distance metric,

which calculates the great-circle distance between two points

on a sphere.
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To summarize, CPPA searches for a robust SSTA pattern

associated with the events of interest and using DBSCAN as-

signs separate labels to adjacent robust grid cells, thereby

grouping them into precursor regions. Each of these precursor

regions are reduced to a one-dimensional time series by cal-

culating the area-weighted mean. Similar to Eq. (2), we also

calculate a spatial covariance time series of all the precursor

regions together, referred to as CPPA spatial pattern time

series, or short CPPAsp. Hence, CPPA outputs both the spatial

pattern time series and a single time series for each precursor

region. For more detailed information about the output of the

algorithm and a comparison to using the linear Pearson cor-

relation metric, see appendix C.

d. Forecasting method

We implement a logistic regression (Varoquaux et al.

2015), which tunes the regularization coefficient using

cross validation. Conventional logistic regression opti-

mizes the coefficients to minimize the loss function, which

tends to lead to overfitting. The regularization improves

generalizability to unseen validation data by minimizing

TABLE 1. Parameters of the composite-based precursor pattern

algorithm.

Parameter names

Settings for

ERA-5 data

Settings for

EC-Earth data

1 SCM_percentile_thres 0.95 0.95

2 perc_yrs_out 5, 7.5, 10, 12.5, and 15 10, 20, 30, and 40

3 FSP_thres 0.80 0.80

4 days_before 0, 7, and 14 days 0, 7, and 14 days

4 min_area_in_degrees2 582 582

5 distance_eps 500 km 500 km

FIG. 1. Schematic illustration of the composite-based precursor algorithm (CPPA). In the upper left we illustrate step 1, which detects

grid cells with robust composite anomalies for given lead time. In short, we define robustness by selecting those grid cells that consistently

exceed a percentile threshold, irrespective of the subsample used (i.e., by leaving out some years or by shifting the composite lead times by

2 days). In step 2, we reject all nonrobust grid cells and the remaining (robust) grid cells are grouped into precursor regions (shown in different

colors). See step 1 and step 2 in section 2c for more information. The output of the algorithm forms the predictors of the forecasting tool and

consists of the spatial covariance of the full precursor pattern, and the spatial mean of all individual precursor regions (x1, x2, . . .).
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the loss function 1 1/C times the sum of the squared co-

efficients (L2 regularization), with 1/C being the regula-

rization coefficient. The 1/C is tuned by a second stratified

fivefold cross validation (i.e., the model is trained on a

subset of the data and subsequently, the generalizabil-

ity of the model is tested on validation data). The regu-

larization coefficient that renders the best average

score on the 5 validation sets is chosen. Using the best value

for C, the model is refitted on the complete training dataset

(36 yr). We choose this statistical model because it does not

have as many degrees of freedom as complex machine

learning models and therefore is less prone to a limitation

by data points.

Note that we are first separating the train-test split via

stratified cross validation and subsequently split each

training set into train-validation sets via another stratified

cross validation. This allows us to efficiently use as much

data as possible for training, while the test data are always

strictly separated. For more information on this double

cross-validation framework and a schematic overview, see

appendix B. All precursor time series are standardized,

where the mean and standard deviation are based on

training data.

e. Forecast validation

According to Wilks (2011), ‘‘forecast skill refers to the

relative accuracy of a set of forecasts, with respect to some

set of standard reference forecasts.’’ A good quality fore-

cast should meet a number of requirements, which cannot

be summarized by a single scalar quantity (Wilks 2011).

The World Meteorological Organization set up standard

guidelines (WMO 2006) for verification of long-range

forecasts, encouraging the use of relative operating char-

acteristic (ROC), reliability curves, and a mean squared

skill score (i.e., Brier skill score). We argue that one can

only claim predictive skill if it performs well on all metrics.

In addition, the forecast should perform better than an ap-

propriate reference forecast, which for subseasonal predictions

is the climatological probability. We use area under the curve

relative operating characteristic (AUC-ROC) and area

under curve precision-recall (AUC-PR), Brier skill score,

and reliability plots.

The AUC-ROC was also used by McKinnon et al. (2016).

The ROC represents a balance between true positive rate

(TPR) and false positive rate (FPR) for different thresholds

of the binary forecasting time series (Tables 2 and 3). The

ROC area can be interpreted as ‘‘the probability that the

forecast probability assigned to the event is higher than to

the nonevent’’ (Mason and Graham 2002). See also Kharin

and Zwiers (2003), Fawcett (2006), and Wilks (2011) for

more information.

The AUC-ROC does not take into account the precision,

reliability, and resolution of the forecast. Although the

precision-recall curve still does not take into account the

reliability and resolution, it is more suitable for imbalanced

classes (Saito and Rehmsmeier 2015) and has a focus on

evaluating the positive predictions (i.e., the forecast events).

It quantifies the balance between precision and the Recall

(or TPR) for different thresholds. If we forecast events

using a low threshold, it is easy to get a very high precision,

but difficult to get a high TPR (the denominator will be high

due to many false negatives).

TABLE 3. Summary of verification metrics used in this article, see Table 2 for the contingency table.

Calculation Description

BSS (BSf 2 BSc)/BSc Mean square error for binary classification

(forecast vs climatology)

Precision tp/(tp 1 fp) H/(H 1 FA) Correct positive predictions vs all positive

predictions

Accuracy (tp 1tn)/(tp 1 tn 1 fn 1 fp) (H 1 CN)/(H 1 CN 1 M 1 FA) Ratio of total correct predictions

TPR (recall) tp/(tp 1 fn) H/(H 1 M) Correct positive predictions vs total

number of events

FPR or 1 2
specificity)

fp/(fp 1 tn) or

1 2 tn/(tn 1 fp)

FA/(FA 1 M) Incorrect positive predictions vs incorrect

positive predictions 1 correct negative

predictions

AUC-ROC Area under curve TPR vs FPR points Forecast probability assigned to event

higher than to nonevent

AUC-PR Area under curve precision vs TPR points Does not consider true negatives (misses);

focuses on positive predictions

TABLE 2. Contingency table.

Event observed

Yes No

Forecast Yes True positive (tp)/hit (H) False positive (fp)/false alarm (FA)

No False negative (fn)/misses (M) True negative (tn)/correct negatives (CN)
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The Brier skill score (BSS) is a commonly used metric

for quantifying the quality of a probabilistic forecast. It

takes into account both the reliability and resolution

(Wilks 2011). The reliability quantifies to what extent

forecast yi deviate from the conditional average observa-

tion [mean of distribution of observations (oi), conditioned

on the forecast (yi), i.e., oi 5p(oijyi)]. Resolution quantifies

the difference between the conditional average observa-

tion (oi) and the climatological probability (oi 2o) (i.e.,

forecasts with high resolution can more confidently dis-

tinguish events from nonevents). The BSS is calculated

using the Brier score (BS) for a given probability time

series:

BS5
1

N
�
N

i51

( p
i
2o

i
)
2
, (0#BS# 1), (3)

with pi being the forecast probability at time step i and oi being

the observed event (1 or 0). The climatological Brier score

BSc is calculated for each train-test split by assuming a con-

stant climatogical probability on the basis of the concomitant

training datase (i.e., the same as used to fit the statistical model).

Using BSc and the Brier score of the forecast BSf, we calculate

the Brier skill score (if the BSS is significantly above 0, the

forecast system is better than climatology):

BSS5
BS

c
2BS

f

BS
c

5 12
BS

f

BS
c

, (BSS# 1). (4)

The reliability diagram (e.g., the last row of Fig. 6, described

in more detail below) is used to visualize how reliable and

resolute the forecast is. On the x axis we plot the forecast

FIG. 3. (top) Year 2012 of original T95 time series and hot-day events based on ob-

servational GHCND station from McKinnon et al. (2016) and the T90m time series based

on ERA-5 reanalysis data. Events are defined as exceeding 1 standard deviation s of

T90m. (bottom) Frequency of hot days per year. For comparison in the top plot the mean

and s of both time series is calculated over the same period (1982–2015) as is available

from the original T95 time series, for the bottom plot and elsewhere we use the whole

ERA-5 time series (1979–2018).

FIG. 2. Result of clustering each location on the basis of a binary time series, containing information on the timing of exceedances of a

large anomaly (1 or 0). The datasets differ in spatial resolution (ERA-5: 0.258; EC-Earth: 1.1258) and time period [ERA-5: 1979–2018;

EC-Earth: 160 3 1 yr (present-day climate)]. The original clusters as presented in McKinnon et al. (2016) by using GHCND station

data: 1980–2015.
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probability ranging from 0 to 1 (with 1 being 100% probabil-

ity). For the reliability curve we use 10 equally sized bins (step

size 5 0.1) and plot the forecast probability on the x axis and

observed frequency on the y axis. A perfectly reliable proba-

bilistic forecast would always match the observed frequency

(i.e., show a diagonal line). A histogram is plotted below the

curve to show the forecast distribution, which informs about

the sharpness of the model. The sharpness refers to the ability

of the forecast model to substantially deviate from the clima-

tological probability. The dark-gray area shows where the

forecast is better than climatology (BSS . 0), and the light-

gray area shows where the forecast is only doing better than a

random forecast.

Confidence intervals are created by bootstrapping (n 5
2000, unless stated otherwise), where we bootstrap blocks to

account for autocorrelation, thereby avoiding oversampling of

dependent data points. The block size is objectively defined by

the lag at which the autocorrelation of the target becomes

significantly different from zero.

3. Results

a. Spatial clustering and hot days in ERA-5 and EC-Earth

We performed a parameter sweep to test for robustness

of the eastern U.S. cluster in the ERA-5 and EC-Earth

datasets, as further detailed in appendix A. Overall, we

conclude that the eastern U.S. cluster is robust [i.e., it is

generally categorized as a separate cluster, with only small

differences in the exact boundaries and size (depending

on minor perturbation of the clustering parameters)].

FIG. 5. (a) Out-of-sample cross-correlation matrix for daily data during the study period (24 Jun–22Aug) and for

(b) annual mean values. The ENSO time series refers to the Niño-3.4 time series, defined by the area-weighted

SSTA mean between 58S and 58N and between 1708 and 1208W. The plots are based on ERA-5 data. The double

asterisk indicates significance at p value , 0.01.

FIG. 4. Composite mean of hot-day events (mean over 10 training datasets presented) for both (left) ERA-5 and

(right) EC-Earth. The lag with respect to hot-day events is presented in the subtitles. The stippled green rectangle

depicts the PEP pattern. The contour lines show the robust anomalous grid cells that are extracted in at least 5 of

10 training datasets.
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FIG. 6. Forecast validation for hot days, using only information fromSSTA.We compare using the PEP patternwith

the CPPA precursors for forecasting and show the importance of using multiple skill metrics.
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As described in appendix A, we choose the eastern U.S.

cluster that is most similar to McKinnon et al. (2016), see

Fig. 2. We calculate the spatial T90m and the associated

hot days as explained in section 2b. Figure 3 shows that the

ERA-5 T90m time series and associated frequency of hot

days (yr21) matches closely with the original T95 and hot-

day time series found by McKinnon et al. (2016).

b. Comparison between CPPA, PEP, and climate indices

Figure 4 shows the hot-day events composite mean of

SST grid cells (mean over 10 training datasets) for both

ERA-5 and EC-Earth, where the stippled green rectangle

depicts the PEP pattern and the black contour lines show

the robust anomalous grid cells detected by CPPA. As can

be seen from Fig. 3, there is a lot of interannual variability

in the amount of hot days, with 4 years together accounting

for 33% of the events and with 9 years having less than 1%

of the events in the ERA-5 reanalysis. The output of CPPA,

however, is robust across the 10 training datasets, as de-

tailed in appendix B (Fig. B1). For ERA-5, the labels that

are (randomly) assigned to each precursor region by the

DBSCAN clustering algorithm are shown in appendix

C (Fig. C1).

We observe that, in the tropical Pacific, a La Niña–like
pattern is picked up in EC-Earth and not in ERA-5 and also

the tropical Atlantic precursor regions are different. Both

ERA-5 and EC-Earth do share the cold-eastern and warm

mid-Pacific features. These are also the main features of

the PDO pattern and are part of the PEP pattern as pre-

sented by McKinnon et al. (2016). Yet the cold western

Pacific of the PEP pattern is considered nonrobust ac-

cording to CPPA.

We also analyzed how the T90m, PEP, Niño-3.4, PDO,

and CPPA spatial pattern (CPPAsp) time series are linked

to each other via a cross-correlation matrix (Fig. 5). See

appendix E for background information on the calculation

of the PDO and ENSO indices. We observe that the PEP

time series show a higher correlation coefficient with T90m

when compared with the CPPAsp time series and the climate

indices (PDO and Niño-3.4), particularly during the summer

days. We also observe that CPPAsp and PEP are strongly cor-

related with the PDO time series. The difference between

EC-Earth and ERA-5; the link between PEP, CPPAsp, and the

climate indices; and the potential physical mechanism are further

discussed in section 4c. In the following section, we will compare

the forecast skill between PEP, the climate indices, and the CPPA

time series (CPPAsp and CPPA precursor regions time series).

c. Using multiple validation metrics

Figure 6 shows the verification of hot-day-event fore-

casts, comparing the use of the PEP time series versus the

CPPA output to fit the statistical model. As explained in

section 2e, we objectively determine the block window size

for bootstrapping by calculating up to which lag the auto-

correlation is significantly different from 0 (see Fig. 7), for

the ERA-5 daily T90m time series this is 32 days (Fig. 7a)

and for the EC-Earth daily T90m time series this is

71 days (Fig. 7c).

We observe that forecasts based on either PEP or CPPA

perform better than random chance, rendering approxi-

mately the same skill for ERA-5. For EC-Earth data, we

observe that CPPA is a better precursor compared to PEP.

We also see lower skill for EC-Earth, even though the cli-

mate model data has 4 times as many data points. Both

datasets, however, do not render a significantly better

forecast compared to the climatological probability, as is

evident from the near-zero BSS values and the reliability

diagrams (Fig. 6). This nonexistent predictability for hot

days is not surprising given the fact that we are trying to

predict the exact day at which the hot-day event should

occur. Even for the EC-Earth data, where we have many

data points available, the statistical model cannot reso-

lutely discriminate between events and nonevents. Since we

know the EC-Earth model has its limitations in represent-

ing the real climate, especially extremes, we will now only

focus on the ERA-5 dataset.

FIG. 7. The autocorrelation of T90m and the 15-day mean T90m in ERA-5 and the T90m in EC-Earth. The autocorrelation is used to

determine block window size for bootstrapping.
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FIG. 8. Forecast validation for ‘‘hot 15-day mean events.’’ Here we show the comparison between using (left) the

PDO 1 ENSO vs the CPPA precursors and (right) the PEP pattern vs the CPPA precursors.
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d. Temporal aggregation to improve signal-to-noise ratio

To improve the signal-to-noise ratio, we aggregate over time

with the trade-off of a reduction in temporal precision and the

number of data points. We aggregate the daily data into bins of

15 days and calculate the mean of all bins. The window size of

15 days is commonly used in the literature when studying

Rossby wave dynamics (Kornhuber et al. 2017; Röthlisberger
et al. 2018). Since we are now working with time windows, the

lead time is defined from the day that the forecast would be

issued, using only information prior and including that day, to

the center date of a forecast time window, see appendix F for

more information. We will compare the forecasts with the

conventional approach [i.e., using the relevant climate modes

of variability from SST (PDO 1 ENSO)].

Figure 8 shows the verification when we first calculated

15-day means of T90m and then used the event definition that

was also used to define hot days [seeEq. (1)], thus having a base

rate of approximately 16%. The block window size is five time

steps (i.e., 75 days). For these so-called hot 15-day mean

events, we observe a decline in skill, not an improvement. The

histogram shows that almost all values are close to the

climatological probability, especially for the PDO 1 ENSO

forecast. Ostensibly, we still have insufficient information to

fit a reliable model and/or the reduction in data points seems to

dominate the benefit of a better signal-to-noise ratio.

Thus, next, we lower the extremity of the events (which

increases the base rate) and define the target based on 15-day

upper-tercile and 15-day above-median events. Figure 9

shows that the statistical models that are fitted using the

CPPA precursors outperform the ones that use PEP, or

PDO 1 ENSO. For the upper-tercile events (right two col-

umns of Fig. 9), skill is better relative to the hot 15-day mean

events (Fig. 8) but is slightly lower relative to the above-

median events, which show skill up to at least 30 days of lead

time (left two columns of Fig. 9). To summarize, we improved

forecast skill by 1) finding better precursors using CPPA and

2) using temporal aggregation in combination with increasing

the base rate (i.e., lowering the threshold for events).

e. Using a window probability and spatial aggregation to

improve event forecasts

To increase predictability of extreme events, we relax

the temporal precision by using a ‘‘window probability,’’

FIG. 9. As in Fig. 8, but (left),(left center) for above-median events and (right center),(right) for upper-tercile events of the 15-day mean

T90m time series. The plots are based on ERA-5 data.
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meaning that we predict the occurrence of a relatively short

heat-wave event within a longer time window. Hence, the

exact date of occurrence within this time window is flexible.

When using a 15-day time window, a predicted heat-wave

event may thus occur 7 days earlier or later. We define a

heat wave when two or more hot days occur with at most

one nonhot day between them. With this approach, we still

smooth out noise in the precursor time series (by using

15-day means), while still predicting relatively short-lived

events consisting of daily temperature extremes.

Still, the target variable is not smoothed in time. To in-

crease the signal-to-noise of the target variable we apply

spatial aggregation. We do this in a similar manner as was

done for T90m [section 2b(1)], defined as the spatial mean

over the 10% warmest grid cells within the eastern U.S.

cluster. Here, we define two additional target time series

with increased spatial aggregation by calculating the mean

over the 35%warmest (T65m) and 50% (T50m) warmest grid

cells. Subsequently, the hot days are defined for each time

series using the equivalent of Eq. (1).

The Brier skill score for the T90m heat-wave forecast

(Fig. 10, left column) is lower relative to that of upper-

tercile 15-day mean T90m events (Fig. 9, right columns),

even though the base-rate of the T90m heat-wave window

probability is higher (41%). By aggregating over space

(T65m and T50m, i.e., the second and third column of Fig. 10)

one reduces the noise in the target time series and thereby

enhances forecast skill.

f. Subseasonal forecasts of moderate heat waves using

both SST and soil moisture

Previous results focused on quantifying predictability

from only SST. Now we aim at enhancing forecast skill by

including additional information from soil moisture. We

proceed with T65m as it has significant skill up to at least

30 days (Fig. 10, central column), while still being relevant

for temperature extremes. During the summer days, the

daily T65m time series1 has a temporal mean value of 2.38C
and standard deviation of 2.18C. Using the equivalent of

Eq. (1), the events have an average anomaly of 5.68C
ranging between 4.48 and 9.98C. A total of 466 days belong

to these events (base rate of 15.5%), and after grouping

these days into multiday events (as defined in section 3e)

there are 103 events left. Because the threshold is now less

extreme, we will call these events moderate heat waves.

Figure 11 shows the verification results for forecasts

when using precursors both from CPPA and soil moisture

(orange dashed line) and when using only CPPA (blue

solid line). We observe that soil moisture contributes to a

small increase in skill up to 30 days lead-time, but for

longer lead times all information can be retrieved from the

SST precursors. [Tables C1 and D1 in appendixes C and D,

respectively, show all precursors that were used for this

prediction. In appendix F, Fig. F2 shows that the 10 models

with a lead time of 50 days that were learned on the basis

of different training datasets are robust (i.e., the 10

models generally learned the same regression coeffi-

cients). Figure F3 shows that also the forecast quality is

robust when using different train-validation combina-

tions; see also appendix B.]

FIG. 10. Forecasting heat waves (defined in the text) within a 15-day window. Three different spatial aggregation sizes are used to define

our continuous temperature time series [(left) T90m, (center) T65m, and (right) T50m), after which the associated moderate heat-wave

events are calculated. The plots are based on ERA-5 data.

1 Note that T65m refers to a time series from calculating the

spatial mean of the 35% warmest eastern U.S. grid cells on each

day; it has a temporal mean and standard deviation (just like T90m
is a time series, as shown in Fig. 3).
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For this forecast, we achieve predictive skill 50 days in

advance at the 2.5th–97.5th confidence interval (n 5 5000).

This forecast for moderate heat waves is more capable of

discriminating between event and nonevent occurrences

(higher resolution) compared to the original hot-day defi-

nition, as is evident from the reliability diagram and Brier

Skill Score.

4. Discussion

a. Using multiple validation metrics

A proper forecast validation for eastern U.S. hot days (i.e.,

forecasting individual days), shows that the forecast does not

perform significantly better than the climatological probability.

The probabilistic forecast values for hot days were not able to

confidently discriminate between events and nonevents [i.e.,

low resolution, p(ojjyi), where yi is the forecast probability, and
oj are the observed values (Wilks 2011)]. This can be seen from

the reliability diagrams in Fig. 6. Contrarily to McKinnon et al.

(2016), we conclude that there is no predictive skill for indi-

vidual hot days.

The AUC-ROC metric measures discrimination (see

section 2e), also the forecast values are only sorted and

their actual value is neglected. Thus, resolution will not be

measured, and consequently the forecast probability might

be always close to the climatological probability (pc), which

makes them of low practical value. If one wants to assess

predictive skill, the AUC-ROC is an improper validation

metric if used by itself as it only measures potential skill

(see Wilks 2011, chapter 8).

b. Improving statistical forecasts for events

The problem when predicting extreme events on S2S time

scales lies between a boundary condition problem and an initial

value problem (Vitart et al. 2019), that is, the boundary con-

ditions that we use to constrain a target distribution (in this

case temperature) changes over time. From this perspective,

we believe there are three limiting factors for these statistical

forecasts: 1) missing information of low-frequency drivers,

2) the chaotic nature of the atmosphere [i.e., knowing the full

constrain of the boundary condition(s) is still not strong

enough to reliably predict extreme events (Krishnamurthy

2019; Vitart et al. 2019)], and 3) the statistical model is sub-

optimal due to insufficient data points and/or the complex

nonlinear interactions cannot be described by the model.

When using only PDO and ENSO for forecasting (see

Fig. 9), we clearly miss information compared to using the

FIG. 11. Verification results for forecasting T65m heat waves (defined in the text) within a 15-day window. Solid

blue line shows the results for the forecast when using the CPPA time series, and the stippled orange line show

results when including precursor time series from both CPPA and soil moisture (see Tables C1 and D1 of

appendixes C andD, respectively, for a list of all precursors that were used). Bootstrap sample size is 5000. The plots

are based on ERA-5 data.
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CPPA time series. While we have many data points when

using the EC-Earth dataset for the forecast of individual

hot-day events (Fig. 6) or ‘‘hot 15-day mean events’’ (see

Fig. F4 in appendix F), we are still unable to produce re-

liable and resolute forecasts. However, improved precur-

sors (using CPPA) and temporal aggregation (relating to

point 1 of the limiting factors) can only contribute to a

pronounced improvement in skill when we predict events

that are not too extreme (relating to point 2) (cf. Figs. 8, 9).

We do not think the linear statistical model (point 3) was

inadequate, we have tried tuning a tree-based gradient

boosting regressor (GBR) by doing an extensive parameter

grid search (results not shown). However, the best per-

formance of the GBR was only as good as the regularized

logistic regression.

To enable forecasts of more extreme events, we use a

window probability definition for the target variable (i.e.,

the probability of a relatively short-lived heat wave oc-

curring within a longer prediction window) and, in addi-

tion, apply stronger spatial smoothing. This combination

effectively reduces the noise in the target time series and

increases the base rate, while still predicting societally

relevant high-temperature events. Thus, we conclude that

S2S predictions of high-temperature events are possible,

but also fundamentally limited by the chaotic nature of

the atmosphere constraining the signal-to-noise ratio and

the availability of data, which hampers the detection of the

signal. Nevertheless, with the techniques presented here, a

stakeholder can be helped to decide on the preferred bal-

ance between spatial aggregation, temporal aggregation,

and extremity of the to-be-forecast events. Thus, given

the stakeholder needs, optimal aggregation and threshold

levels can be found to attempt to render skill at the desired

lead times.

c. Physical interpretation of the CPPA pattern

In a response-guided approach the features are learned

objectively, which can improve forecast skill relative to

using, for example, climate indices, as is shown in this

paper. Another important advantage is that the features

remain physically interpretable, hence, they can be eval-

uated with physical understanding. Both ERA-5 and EC-

Earth render a SSTA pattern that strongly resembles the

main features of the PDO pattern in its negative phase

(see Fig. E1 in appendix E). This is in line with the physical

mechanism that low-level heating can effect the posi-

tion of the jet stream (Thomson and Vallis 2018; Teng

et al. 2019).

In the Atlantic Ocean, the relationship between hot

days and SSTA differs between EC-earth and ERA-5. We

suspect EC-Earth to suffer from biases, since model per-

turbation experiments have shown a reduction in precip-

itation due to a warm Gulf of Mexico state (Wang et al.

2010), which overlaps with the warm Caribbean Sea region

FIG. A1. Parameter-sweep spatial clustering results for ERA5 (0.258 3 258).
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our analysis finds in the ERA-5 data (Fig. 4, left column). The

lower amount of precipitation is linked to an increase in tem-

perature due to a stronger soil moisture–temperature feedback

(Wang et al. 2010). Their analysis describes the complexity of

the physical links, indicating that it is difficult to simulate the

teleconnection between U.S. temperature and Atlantic SSTA.

EC-Earth has to simulate the entire chain of interactions ac-

curately to get the correct temperature impact, e.g., the cir-

culation, cloud and precipitation response, land surface fluxes

and the soil–moisture temperature feedback.

In general, we also observe that the pattern anomalies

are stronger for the ERA-5 dataset, which could be due to

FIG. A2. Parameter-sweep spatial clustering results for EC-Earth (1.1258 3 1.1258).

FIG. B1. A complete overview of the ‘‘double’’ stratified cross-validation procedure

to enable a response-guided search for precursors and model tuning with a limited

amount of data. This results in a forecast model for each 10 train-test splits and for

each lag.
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the sampling size of 40 years. However, we suspect it is

more likely that EC-Earth is underestimating the link be-

tween SSTA and hot days, which is also supported by the

lower forecast skill of EC-Earth presented in section 3c.

The ostensible underestimation of the atmospheric re-

sponse to SSTA could be the result of unresolved smaller-scale

processes due to insufficient spatial resolution in climate

models (Hodson et al. 2010; van Der Linden et al. 2019;

Thomson and Vallis 2018).

McKinnon et al. (2016) proposed that the PEP pattern

arises from atmosphere-to-ocean heat fluxes in spring/summer,

which are indeed directed toward strengthening of the pat-

tern (see Fig. S12 in McKinnon et al. 2016). This suggests a

mechanism acting on a subseasonal time scale, separate from

the PDO. However, using annual mean values, the cross-

correlation matrix based upon ERA-5 data in Fig. 5 shows

high correlation coefficients between the PEP and PDO,

suggesting that PEP does not arise in a 60-day window, but is

in fact, strongly related to the presence of the negative

PDO phase.

We propose that the presence of the right background

SSTA pattern favors the occurrence and persistence of a

wavy jet stream resulting in a high pressure system over the

eastern United States, and ocean–atmosphere heat fluxes

are likely amplifying the final response (a wavy jet stream).

The correlation of the SSTA pattern with temperature is

likely strongest in summer (Fig. 5) because the impact of a

high pressure system on temperature is exacerbated by

the higher solar irradiation and potentially stronger soil

moisture–temperature feedbacks (when the evaporation

becomes strongly limited by the available soil moisture,

the impact on temperature becomes most apparent, which

FIG. C1. Sea surface temperature regions found by the CPPA algorithm using a single training set (36 years). Clusters should be at least

58 by 58 big (defined at 458N) to form a core sample; if they show a high density, they are more likely to include neighboring grid cells into

the cluster. The radius at which core samples (initial clusters) search for neighboring grid cells is set by the eps parameter, in our case

500 km. We take into account the gridcell area by assigning weights to the samples (i.e., grid cells). Time series are calculated by taking

daily means, weighted by gridcell area and the N-FSP; see section 2c and Fig. 1.
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generally happens at the end of the summer) (Seneviratne

et al. 2010).

5. Conclusions

In this work, we focused on 1) a comparison between

the response-guided CPPA approach, the PEP pattern,

and using climate indices, 2) the importance of using

multiple skill metrics and 3) how one can make reli-

able statistical S2S forecast for high-temperature events.

First, we presented an algorithm that objectively extracts

robust SST anomalies (SSTA) from a target event time

series. We conclude that CPPA can successfully detect

robust SSTA regions. We note that, using continuous time

series instead of a binary one for the target variable, cor-

relation maps appear more robust and render similar re-

sults (see discussion in appendix C). Boschat et al. (2016)

also concluded that correlation maps are more robust

than a composite approach, although they did not per-

form a subsampling as done by the CPPA to check for

robustness.

The use of the AUC-ROC score as a single metric to

assess skill should be avoided because it measures only

potential skill. Based on multiple skill metrics, we showed

that long-lead predictability does not exist for individual

hot days (section 3c). To generate reliable S2S forecasts,

one needs to improve the signal-to-noise ratio, either by

temporal aggregation, spatial aggregation or statistical fil-

tering techniques [e.g., wavelet transformations (Deo et al.

2017)]. Here, we have shown that a low signal-to-noise ratio

in the target time series is indeed a bottleneck when trying

to forecast extreme events defined on a daily resolution.

Using a window probability, we were able to forecast

moderate heat waves with an average anomaly of 5.68C
above climatology.

Forecast skill improved when using the CPPA precursor

regions as compared with using modes of variability (PDO,

Niño-3.4). A key advantage of this response-guided approach

compared to some other feature extraction techniques, is that

precursors remain physically interpretable. With this ap-

proach, one can benefit from a data-driven tool to optimize

skill and also use physical understanding to e.g., identify

plausible physical relationships, select variables, estimate the

associated time scale of dynamics, understand limitations of

predictability from physics (Mariotti et al. 2020). Hence, we

recommend a response-guided approach to learning one’s in-

put features for statistical forecasting models, as was also done

by Kretschmer et al. (2017), for which Python computer code is

being developed and shared on Github.2 The Github release

contains the code and ERA-5 time series to reproduce the

forecasts in this paper.

Our findings highlight how to get an improved physical

understanding and more skillful statistical S2S forecasts by

1) objectively searching for precursors instead of using

modes of variability and 2) improving the signal-to-noise

ratio. Additionally, we introduced a window probability to

allow temporal flexibility, which results in more reliable

predictions of events compared to trying to predict the

exact date of occurrence. A stakeholder is helped more

with a skillful forecast with some uncertainty in exactly

when the event will happen (e.g., between 48 and 62 days

from now), as compared to an uncertain and unskillful

forecast, which attempts to predict exactly when an event

will happen.

Future work could look into implementing statistical

methods to obtain a better signal-to-noise ratio. Using an

automated response-guided approach as presented here in

combination with dynamical model output (i.e., producing

FIG. C2. Robustness of grid cells for (left) ERA-5 and (right) EC-Earth; see section 2 for details. Values equal

to 10 mean that the grid cell is extracted in all 10 different training sets. Grid cells that are consistently part of

the precursor pattern are interpreted as more robust.

2 The code that was used for this work is published in a sepa-

rate release (https://github.com/semvijverberg/RGCPD/releases/

tag/v3.0.0). The most recent version is also online (https://

github.com/semvijverberg/RGCPD).
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hybrid forecasts) could be the next step to make operational,

improved S2S forecasts.

From a physical perspective, the link between SSTA and

temperature is complex and appears to be affected by 1) the

soil moisture–temperature feedback, 2) ocean–atmosphere

interaction leading to a feedback between Rossby waves and

the SSTA, 3) the direct circulation response to the SSTA

pattern excluding the effect of ocean–atmosphere feedbacks,

and potentially 4) a dependence of the atmospheric response

on the wind field (Thomson and Vallis 2018). The physical

interaction and relative importances of these processes will be

subject of future work.
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APPENDIX A

Spatial Clustering of Heat Extremes

A binary time series of extreme temperature event occur-

rences is calculated for each geographical location, the binary

time series is 1 if the temperature exceeds the qth percentile

and is 0 otherwise. The resulting strings of 0s and 1s are the

input for the clustering algorithm. The binary strings that are

very similar (i.e., those that experience heat extremes simul-

taneously) are clustered together. To be consistent with

McKinnon et al. (2016), we use the hierarchical agglomerative

clustering algorithm (Murtagh and Contreras 2012), with the

‘‘jaccard’’ distance metric (Jaccard 1912) and the linkage cri-

terion is set to ‘‘average,’’ meaning that the average distance

between the binary strings is minimized to create clusters.

We tested for robustness of the clusters in ERA-5 (Fig. A1)

and EC-Earth (Fig. A2) by varying the number of clusters

(n_clusters 5 2, 3, 4, 5, 6, 7, and 8) and percentile thresholds

(q5 80, 85, 90, and 95) used to create the binary strings. Since

there are slight differences between the datasets, we also ob-

serve only small differences in the boundaries of the clustering.

Because of these small differences, we decided to not use the

exact same parameters as used by McKinnon et al. (2016). In

the original work, the threshold was fixed at the 95th percen-

tile, and they choose n_clusters5 5. For ERA-5, the exact same

settings render a similar clustering result. For EC-Earth we

choose the clustering output (n_clusters 5 5, q 5 50) such that

the eastern U.S. cluster is most similar to the original eastern

U.S. cluster found by (McKinnon et al. 2016). The final clusters

are shown in Fig. 2.

APPENDIX B

Double Cross Validation

To fit and validate a statistical model, we need a sufficient

amount of independent data points. Particularly for dynamics

on S2S time scales, this is challenging with only 40 years of

data for ERA-5. As mentioned in section 2a, we detrend all

data to avoid that we are fitting a spurious signal to a long-

term trend. Using the response guided approach, we make

choices drawn from data, which increases the danger of

overfitting (Michaelsen 1987). We can minimize this pitfall

with 1) a strict train-test split throughout the whole analysis,

2) doing robustness tests such as testing different train-

validation-test combinations (e.g., see Fig. F3 in appendix

F). As depicted in Fig. B1, we use a stratified 10-fold cross

validation to split training and test data. This means that the

test years are not completely random, since the test set is

forced to be a representative sample in terms of the amount of

events. This helps to avoid train/test combinations that are by

chance dominated by a certain phase of multiannual or de-

cadal variability and it allows us to validate with different

train/test sets, which is not possible with e.g., the leave-one-

year-out method. Because we cannot reliably estimate the

skill based on only 4 years of test data, we repeat the CPPA

TABLE C1. List of all SST precursor time series extracted by

CPPA. The whole or a subset of the precursors are used for

Figs. 5–11. They are based on the ERA-5 dataset.

ERA-5 Precursor labels/names No.

CPPAsv 10

0..1..sst 10

0..2..sst 10

0..3..sst 10

0..4..sst 10

0..5..sst 5

0..6..sst 10

0..7..sst 7

0..8..sst 2

FIG. C3. (a) SST correlationmaps (a5 0.01) for 15-daymean time series at lag5 0, and (b) the robustness across

different training sets. In (a), the mean is over training sets, and grid cells are masked if they were not in 50% of the

training sets.
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algorithm and the subsequent model fitting 10 times. We then

concatenate all forecast test years and calculate our skill

metrics based on all the years in the dataset (40 years for

ERA-5). Thus, we do not train a single statistical model but

rather 10 slightly different ones.

APPENDIX C

CPPA versus Linear Point Correlation Map Approach

For the extracted precursors as shown in Fig. 4, we only show

the mean over the training sets. However, as depicted in

Fig. B1 in appendix B, we extract the precursor regions once

for each training set (and for each lag), see Fig. C1. By looking

at how robust the precursor region extraction was when using

slightly different subsets of data, we can plot the robustness of

the precursor regions (Fig. C2).

We also compare CPPA with the conventional pointwise

correlation map approach. CPPA only looks at relatively ex-

treme events (hot days) to learn the precursor regions. If the

signal of the precursor only arises in the tail of the conditional

temperature distribution, CPPA might enable detection of

precursors showing a nonlinear relationship with eastern U.S.

temperature. When comparing the output of CPPA versus the

correlation map approach shown in Fig. C3, we observe a

qualitatively similar pattern. This shows that either 1) the

correlation map approach was still able to detect a signal when

the underlying signal was in reality nonlinear, or 2) the SST

relationship with temperature is by good approximation linear.

We also note the correlation map shows a higher robustness

compared to CPPA, which only learns from events versus

nonevents. The higher robustness is also the reason to use the

correlation map approach to extract soil moisture time series.

Although with CPPA, we were able to stay close to the analysis

as done by McKinnon et al. (2016).

Because CPPA objectively searches for precursor regions

based on training data that slightly differs for each train-test

split, some precursor regions are not always extracted.

Table C1 shows all the precursor regions (time series) that

were extracted and the count denotes how many times it is

present in the 10 training sets. The format of the labels is

{lag}..{region label}..{variable name}. The labels correspond to

the labels shown in Fig. C1. Note that the lag refers to the lag

at which the precursors were retrieved. Thus, we did not

change the precursors as function of lag as done byMcKinnon

et al. (2016), since we found that using the time series of lag5
00, produced the best forecast skill. We expect this is due to

TABLE D1. As in Table C1, but for soil moisture precursors that

are based on the ERA-5 dataset.

ERA-5 precursor labels/names No.

0..1..sm2 10

0..2..sm2 10

0..3..sm2 10

0..1..sm3 10

0..2..sm3 10

FIG. D1. Similar to Fig. C3 of appendix C, but for soil moisture.
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the fact that the signal-to-noise ratio is largest at lag5 0. The

time series are subsequently shifted to match the lead time on

the x axis of the verification figures.

APPENDIX D

Soil Moisture Time Series

For the final forecast we additionally add information from

soil moisture layer 2 (7–28 cm) and layer 3 (28–72 cm). We

choose these two deeper layers because we expect that there is

morememory in the deeper layers since there is less mixing with

the atmosphere. We include soil-moisture using an existing

framework as introduced by Kretschmer et al. (2017) that is

similar to CPPA. The soil moisture time series are retrieved by

1) calculating which grid cells are significantly correlating with

the T90m time series at lag5 0, 2) subsequently clustering regions

of same sign together in the same fashion as done for CPPA, and

3) calculating the area-weighted spatial mean time series for each

cluster, results for this analysis are shown in Fig. D1 and TableD1.

APPENDIX E

Climate Indices

For our daily ENSO time series, we use the Niño-3.4
spatial region (58S–58N and 1708–1208W) to calculate the

area-weighted mean of the detrended SSTA daily data

(Deser and Trenberth 2016). For the calculation of the

PDO time series, we first aggregate the detrended SSTA

daily data to monthly means. Based on the monthly mean

area-weighted SSTA training data, we construct the first

EOF (or loading pattern) of the North Pacific (208–708N
and 1158E–1108W) (Deser and Trenberth 2016). The load-

ing pattern is projected on the (daily) test data to obtain the

daily principal component time series.

We calculate the PDOwith the training data for each test set

(as illustrated by Fig. B1 in appendix B) to obtain an out-of-

sample time series of the PDO. See Fig. E1 for the (mean over

training sets) PDO pattern and a composite mean of the El

Niño phase.

APPENDIX F

Supporting Information Forecasts

When we aggregate to 15-day means, without overlap in

the windows, the lead time can be defined in multiple ways.

To make our forecast similar to an operational imple-

mentation, the lead time is defined such that we are pre-

dicting the centered date of a time window, using only

information from the past. Figure F1 shows a schematic

illustration where we predict the centered date 26 August

2012. To select the precursor dates, we shift lag5 25 and the

FIG. F1. Schematic illustration of the temporal aggregation and how the lead times are

defined. (top) Dates represent the time series belonging to the target time series. (bottom)

Dates represent the time series of the precursors.

FIG. E1. (left) El Niño phase of ENSO, found by taking a composite meanwhere the 5-month smoothedNiño-3.4
time series exceeds 0.48. (right) PDO pattern (mean over training sets). The retrieval is obtained by calculating

the first EOF (or loading pattern) for Pacific area-weighted SST between 208 and 658N and between 1158E and

–1108W. Time series are used for the computation of the cross-correlation matrix and for the forecasts (PDO 1
ENSO 1 sm).
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additional 15 days back in time. Hence, the prediction is

made on 1 August 2012, 25 days in advance, using infor-

mation of 1 August 2012 and of the previous 14 days. Note

that the exact summer dates that we originally forecast on

daily time scale inevitably change from 24 June to 22 August to

the centered dates 27 June–26 August: exactly five bins of

15 days.

In Fig. F2, we use a boxplot to convey the consistency

between models that were learned on different training

datasets. The corresponding precursor regions can be

found in appendices C and D. The spread in the logistic

regression coefficients is generally small, indicating that

overall, the models were similar. This supports that what

the model learned was not a lucky fit that resulted in good

skill scores on the test dataset, but rather, it relearned

the same associations when applying perturbations to

the training data. We will not go into discussing the

physical meaning of the coefficients, since a model that

provides high forecast skill, does not necessarily inform

about the underlying causal structure (Li et al. 2020;

Runge et al. 2019).

Figure F3 show a robustness check for the forecast skill,

where we tested the influence of using 3 different combinations

of train-validation sets for the ‘‘tune forecast model’’ step in

Fig. B1 of appendix B. Sections 3c and 3d showed that, using

CPPA or PEP as precursor(s), hot-day events do not show

predictive skill at long leads. Figure F4 shows the forecast skill

when keeping the same base rate and aggregating over time

(i.e., the hot 15-day mean events). ERA-5 does not show an

increase in forecast skill compared to forecasting hot-day

events. EC-Earth, with many more data points, shows a small

FIG. F3. Forecast-skill robustness test in which we used three different combinations of train-validation sets for the

‘‘tune forecast model’’ step (depicted in Fig. B1 of appendix B).

FIG. F2. Boxplot of the logistic regression coefficients that were

fitted using 10 different training sets with a lead time of 50 days.
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FIG. F4. Forecast validation for ‘‘hot 15-daymean events’’ using ERA-5 (40 years of data) and EC-Earth (160 years

of data).
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increase in skill relative to the daily events, but still not a

significant one.
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