21 research outputs found

    Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique

    Get PDF
    Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.Comment: Accepted and Published by "Sensors" Journal, 19 pages, 8 figure

    Raman Imaging with a Fiber-Coupled Multichannel Spectrograph

    No full text
    Until now, spatially resolved Raman Spectroscopy has required to scan a sample under investigation in a time-consuming step-by-step procedure. Here, we present a technique that allows the capture of an entire Raman image with only one single exposure. The Raman scattering arising from the sample was collected with a fiber-coupled high-performance astronomy spectrograph. The probe head consisting of an array of 20 Ă— 20 multimode fibers was linked to the camera port of a microscope. To demonstrate the high potential of this new concept, Raman images of reference samples were recorded. Entire chemical maps were received without the need for a scanning procedure

    Ultrafast imaging Raman spectroscopy of large-area samples without stepwise scanning

    Get PDF
    Step-by-step, time-consuming scanning of the sample is still the state-of-the-art in imaging Raman spectroscopy. Even for a few 100 image points the measurement time may add up to minutes or hours. A radical decrease in measurement time can be achieved by applying multiplex spectrographs coupled to imaging fiber bundles that are successfully used in astronomy. For optimal use of the scarce and expensive observation time at astronomical observatories, special high-performance spectrograph systems were developed. They are designed for recording thousands of spatially resolved spectra of a two-dimensional image field within one single exposure. Transferring this technology to imaging Raman spectroscopy allows a considerably faster acquisition of chemical maps. Currently, an imaging field of up to 1 cm2 can be investigated. For porcine skin the required measurement time is less than 1 min. For this reason, this technique is of particular interest for medical diagnostics, e.g., the identification of potentially cancerous abnormalities of skin tissue
    corecore