777 research outputs found

    Back to the future? Neue Aspekte in der Therapie der peritonealen Karzinose

    Get PDF

    Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms

    Get PDF
    Time-domain perturbation theory of photon diffusion up to third order was evaluated for its accuracy in deducing optical properties of breast tumors using simulated and physical phantoms and by analyzing 141 projection mammograms of 87 patients with histology-validated tumors that had been recorded by scanning time-domain optical mammography. The slightly compressed breast was modeled as (partially) homogeneous diffusely scattering infinite slab containing a scattering and absorbing spherical heterogeneity representing the tumor. Photon flux densities were calculated from densities of transmitted photons, assuming extended boundary conditions. Explicit formulas are provided for second-order changes in transmitted photon density due to the presence of absorbers or scatterers. The results on phantoms obtained by perturbation theory carried up to third order were compared with measured temporal point spread functions, with numerical finite-element method (FEM) simulations of transmitted photon flux density, with results obtained from the diffraction of diffuse photon density waves, and from Pade approximants. The breakdown of first-, second-, and third-order perturbation theory is discussed for absorbers and a general expression was derived for the convergence of the Born series in this case. Taking tumor optical properties derived by the diffraction model as reference we conclude that estimates of tumor absorption coefficients by perturbation theory agree with reference values within +/-25% in only 65% (first order), 66% (second order), and 77% (third order) of all mammograms analyzed. In the remaining cases tumor absorption is generally underestimated due to the breakdown of perturbation theory. On average the empirical Pade approximants yield tumor absorption coefficients similar to third-order perturbation theory, yet at noticeable lower computational efforts

    Uptake, biodistribution, and time course of naked plasmid DNA trafficking after intratumoral in vivo jet injection

    Get PDF
    Nonviral jet injection is an applicable technology for in vivo gene transfer of naked DNA. However, little is known about the biodistribution and clearance of jet-injected DNA, or about its localization within tissue and cells. Therefore, in this study we analyzed the intratumoral and systemic biodistribution of jet-injected naked DNA in human colon carcinoma-bearing NCr-nu/nu mice, which were jet-injected with the pCMVbeta plasmid DNA. Intratumoral and systemic plasmid DNA biodistribution was analyzed 5, 10, 20, and 40 min and 3, 6, 24, 48, and 72 hr after jet injection, using quantitative real-time polymerase chain reaction. In the tumors, a rapid drop in naked DNA load within 24 hr of jet injection was shown. Detailed analysis of intratumoral distribution of rhodamine-labeled DNA revealed the presence of plasmid DNA within tumor cells 5 min after jet injection and further accumulation of significant DNA amounts in the cell nuclei 30 to 60 min after jet injection. In the blood, DNA amounts rapidly dropped within 10 to 40 min of jet injection to less than 0.001 pg of plasmid per 250 ng of tissue DNA and only minimal plasmid DNA dissemination was detected in liver, lung, spleen, kidney, and ovaries, which was cleared 3 to 6 hr after jet injection. By contrast, in heart, bone marrow, and brain almost no plasmid DNA was detectable

    Circulating MACC1 transcripts in colorectal cancer patient plasma predict metastasis and prognosis

    Get PDF
    BACKGROUND: Metastasis is the most frequent cause of treatment failure and death in colorectal cancer. Early detection of tumors and metastases is crucial for improving treatment strategies and patient outcome. Development of reliable biomarkers and simple tests routinely applicable in the clinic for detection, prognostication, and therapy monitoring is of special interest. We recently identified the novel gene Metastasis-Associated in Colon Cancer 1 (MACC1), a key regulator of the HGF/Met-pathway. MACC1 is a strong prognostic biomarker for colon cancer metastasis and allows identification of high-risk subjects in early stages, when determined in patients' primary tumors. To overcome the limitation of a restricted number of molecular analyses in tumor tissue, the establishment of a non-invasive blood test for early identification of high-risk cancer patients, for monitoring disease course and therapy response is strongly needed. METHODOLOGY/PRINCIPAL FINDINGS: For the first time, we describe a non-invasive assay for quantification of circulating MACC1 transcripts in blood of more than 300 colorectal cancer patients. MACC1 transcript levels are increased in all disease stages of the cancer patients compared to tumor-free volunteers. Highest MACC1 levels were determined in individuals with metastases (all P<0.05). Importantly, high MACC1 levels correlate with unfavorable survival (P<.0001). Combining MACC1 with circulating transcripts of the metastasis gene S100A4, a transcriptional target of the Wnt/beta-catenin-pathway, improves survival prediction for newly diagnosed cancer patients. CONCLUSION/SIGNIFICANCE: This blood-based assay for circulating MACC1 transcripts, which can be quantitated on a routine basis, is clinically applicable for diagnosis, prognosis, and therapeutic monitoring of cancer patients. Here we demonstrate the diagnostic and prognostic value of circulating MACC1 transcripts in patient plasma for metastasis and survival. Since MACC1 represents a promising target for anti-metastatic therapies, circulating MACC1 transcripts may prove to be an ideal read-out for monitoring therapeutic response of future interventions targeting MACC1-induced metastasis in cancer patients

    Systemic shRNA mediated knock down of S100A4 in colorectal cancer xenografted mice reduces metastasis formation

    Get PDF
    The metastasis-inducing protein S100A4 was found to be a prognostic indicator for the development of metachronous metastases. S100A4 expression levels correlate with the formation of human colorectal cancer metastases and shorter patients' survival. Inhibition of S100A4 expression in patients might therefore result in decreased metastasis formation and prolonged survival. In the present study, we used shRNA expression plasmids to inhibit S100A4 expression in the colorectal cancer cell lines HCT116, SW620 and DLD-1. Cell lines with reduced S100A4 expression showed reduced cell migration and invasion in vitro. The knock-down of S100A4 expression also led to significantly diminished formation of liver metastases when intrasplenically transplanted in mice (P = 0.004). We then focused on the therapeutic potential of systemically applied shRNA expression plasmids acting on S100A4 via repeated hydrodynamics-based tail vein injection of plasmid DNA. Mice, intrasplenically transplanted with HCT116 cells and treated systemically with S100A4‑shRNA plasmids, showed a decrease of S100A4 and MMP9 expression levels, resulting in significantly reduced liver metastases (P = 0.005). In summary, we show for the first time the intratumoral knock down of S100A4 via systemic application of S100A4‑shRNA plasmid DNA, which restricts metastasis formation in a xenografted mouse model of colorectal cancer

    RAGE mediates S100A4-induced cell motility via MAPK/ERK and hypoxia signaling and is a prognostic biomarker for human colorectal cancer metastasis

    Get PDF
    Survival of colorectal cancer patients is strongly dependent on development of distant metastases. S100A4 is a prognostic biomarker and inducer for colorectal cancer metastasis. Besides exerting intracellular functions, S100A4 is secreted extracellularly. The receptor for advanced glycation end products (RAGE) is one of its interaction partners. The impact of the S100A4-RAGE interaction for cell motility and metastasis formation in colorectal cancer has not been elucidated so far. Here we demonstrate the RAGE-dependent increase in migratory and invasive capabilities of colorectal cancer cells via binding to extracellular S100A4. We show the direct interaction of S100A4 and RAGE, leading to hyperactivated MAPK/ERK and hypoxia signaling. The S100A4-RAGE axis increased cell migration (P<0.005) and invasion (P<0.005), which was counteracted with recombinant soluble RAGE and RAGE-specific antibodies. In colorectal cancer patients, not distantly metastasized at surgery, high RAGE expression in primary tumors correlated with metachronous metastasis, reduced overall (P=0.022) and metastasis-free survival (P=0.021). In summary, interaction of S100A4-RAGE mediates S100A4-induced colorectal cancer cell motility. RAGE by itself represents a biomarker for prognosis of colorectal cancer. Thus, therapeutic approaches targeting RAGE or intervening in S100A4-RAGE-dependent signaling early in tumor progression might represent alternative strategies restricting S100A4-induced colorectal cancer metastasis

    Impact of mutant beta-catenin on ABCB1 expression and therapy response in colon cancer cells

    Get PDF
    Background: Colorectal cancers are often chemoresistant toward antitumour drugs that are substrates for ABCB1-mediated multidrug resistance (MDR). Activation of the Wnt/beta-catenin pathway is frequently observed in colorectal cancers. This study investigates the impact of activated, gain-of-function beta-catenin on the chemoresistant phenotype. Methods: The effect of mutant (mut) beta-catenin on ABCB1 expression and promoter activity was examined using HCT116 human colon cancer cells and isogenic sublines harbouring gain-of-function or wild-type beta-catenin, and patients' tumours. Chemosensitivity towards 24 anticancer drugs was determined by high throughput screening. Results: Cell lines with mut beta-catenin showed high ABCB1 promoter activity and expression. Transfection and siRNA studies demonstrated a dominant role for the mutant allele in activating ABCB1 expression. Patients' primary colon cancer tumours shown to express the same mut beta-catenin allele also expressed high ABCB1 levels. However, cell line chemosensitivities towards 24 MDR-related and non-related antitumour drugs did not differ despite different beta-catenin genotypes. Conclusion: Although ABCB1 is dominantly regulated by mut beta-catenin, this did not lead to drug resistance in the isogenic cell line model studied. In patient samples, the same beta-catenin mutation was detected. The functional significance of the mutation for predicting patients' therapy response or for individualisation of chemotherapy regimens remains to be established

    C/EBPβ regulates homeostatic and oncogenic gastric cell proliferation

    Get PDF
    Cancer of the stomach is among the leading causes of death from cancer worldwide. The transcription factor C/EBPβ is frequently overexpressed in gastric cancer and associated with the suppression of the differentiation marker TFF1. We show that the murine C/EBP{beta} knockout stomach displays unbalanced homeostasis and reduced cell proliferation and that tumorigenesis of human gastric cancer xenograft is inhibited by knockdown of C/EBPβ. Cross-species comparison of gene expression profiles between C/EBPβ-deficient murine stomach and human gastric cancer revealed a subset of tumors with a C/EBPβ signature. Within this signature, the RUNX1t1 tumor suppressor transcript was down-regulated in 38% of gastric tumor samples. The RUNX1t1 promoter was frequently hypermethylated and ectopic expression of RUNX1t1 in gastric cancer cells inhibited proliferation and enhanced TFF1 expression. These data suggest that the tumor suppressor activity of both RUNX1t1 and TFF1 are mechanistically connected to C/EBPβ and that cross-regulation between C/EBPβ-RUNX1t1-TFF1 plays an important role in gastric carcinogenesis

    Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) is the second leading cause of cancer deaths despite the fact that detection of this cancer in early stages results in over 90% survival rate. Currently less than 45% of at-risk individuals in the US are screened regularly, exposing a need for better screening tests. We performed two case-control studies to validate a blood-based test that identifies methylated DNA in plasma from all stages of CRC. METHODOLOGY/PRINCIPAL FINDINGS: Using a PCR assay for analysis of Septin 9 (SEPT9) hypermethylation in DNA extracted from plasma, clinical performance was optimized on 354 samples (252 CRC, 102 controls) and validated in a blinded, independent study of 309 samples (126 CRC, 183 controls). 168 polyps and 411 additional disease controls were also evaluated. Based on the training study SEPT9-based classification detected 120/252 CRCs (48%) and 7/102 controls (7%). In the test study 73/126 CRCs (58%) and 18/183 control samples (10%) were positive for SEPT9 validating the training set results. Inclusion of an additional measurement replicate increased the sensitivity of the assay in the testing set to 72% (90/125 CRCs detected) while maintaining 90% specificity (19/183 for controls). Positive rates for plasmas from the other cancers (11/96) and non-cancerous conditions (41/315) were low. The rate of polyp detection (>1 cm) was approximately 20%. CONCLUSIONS/SIGNIFICANCE: Analysis of SEPT9 DNA methylation in plasma represents a straightforward, minimally invasive method to detect all stages of CRC with potential to satisfy unmet needs for increased compliance in the screening population. Further clinical testing is warranted

    Loss-of-function uORF mutations in human malignancies

    Get PDF
    Ribosome profiling revealed widespread translational activity at upstream open reading frames (uORFs) and validated uORF-mediated translational control as a commonly repressive mechanism of gene expression. Translational activation of proto-oncogenes through loss-of-uORF mutations has been demonstrated, yet a systematic search for cancer-associated genetic alterations in uORFs is lacking. Here, we applied a PCR-based, multiplex identifier-tagged deep sequencing approach to screen 404 uORF translation initiation sites of 83 human tyrosine kinases and 49 other proto-oncogenes in 308 human malignancies. We identified loss-of-function uORF mutations in EPHB1 in two samples derived from breast and colon cancer, and in MAP2K6 in a sample of colon adenocarcinoma. Both mutations were associated with enhanced translation, suggesting that loss-of-uORF-mediated translational induction of the downstream main protein coding sequence may have contributed to carcinogenesis. Computational analysis of whole exome sequencing datasets of 464 colon adenocarcinomas subsequently revealed another 53 non-recurrent somatic mutations functionally deleting 22 uORF initiation and 31 uORF termination codons, respectively. These data provide evidence for somatic mutations affecting uORF initiation and termination codons in human cancer. The insufficient coverage of uORF regions in current whole exome sequencing datasets demands for future genome-wide analyses to ultimately define the contribution of uORF-mediated translational deregulation in oncogenesis
    • …
    corecore