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Time-domain perturbation theory of photon diffusion up to third order was evaluated for its accuracy in
deducing optical properties of breast tumors using simulated and physical phantoms and by analyzing 141
projection mammograms of 87 patients with histology-validated tumors that had been recorded by scanning
time-domain optical mammography. The slightly compressed breast was modeled as �partially� homogeneous
diffusely scattering infinite slab containing a scattering and absorbing spherical heterogeneity representing the
tumor. Photon flux densities were calculated from densities of transmitted photons, assuming extended bound-
ary conditions. Explicit formulas are provided for second-order changes in transmitted photon density due to
the presence of absorbers or scatterers. The results on phantoms obtained by perturbation theory carried up to
third order were compared with measured temporal point spread functions, with numerical finite-element
method �FEM� simulations of transmitted photon flux density, with results obtained from the diffraction of
diffuse photon density waves, and from Padé approximants. The breakdown of first-, second-, and third-order
perturbation theory is discussed for absorbers and a general expression was derived for the convergence of the
Born series in this case. Taking tumor optical properties derived by the diffraction model as reference we
conclude that estimates of tumor absorption coefficients by perturbation theory agree with reference values
within ±25% in only 65% �first order�, 66% �second order�, and 77% �third order� of all mammograms
analyzed. In the remaining cases tumor absorption is generally underestimated due to the breakdown of
perturbation theory. On average the empirical Padé approximants yield tumor absorption coefficients similar to
third-order perturbation theory, yet at noticeable lower computational efforts.
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I. INTRODUCTION

Optical mammography �1–8� aims at the detection of
breast cancer and, in particular, at the characterization of
tumors �9–12� by diffuse optical spectroscopy to aid diagno-
sis and therapy control. From diffusely transmitted or re-
flected near infrared light absorption and scattering proper-
ties of breast tissue including benign and malignant lesions
may be reconstructed provided tomographic arrangements of
sources and detectors are used, i.e., the diffusely transmitted
light is recorded at a sufficient number of projection angles.
Both linear and nonlinear forward models, e.g., numerical
finite-element �FEM� solutions of the diffusion equation, are
employed to solve the ill-posed inverse problem. Paraxial
scanning mammographs, on the other hand, directly provide
shadowgrams of the breast slightly compressed between two
glass plates that do not require the solution of the ill-posed
problem. Because of poor angular sampling, however, little
information on the precise location of the tumor along the
compression direction and on its volume is obtained from
such measurements in general. Therefore, when analyzing
paraxial mammograms recorded in time domain or frequency
domain for tumor optical properties, prior knowledge on the
location and size of the tumor, if available, should be in-
cluded in the analysis, otherwise tumor size and its depth
location have to be assumed. Subsequently, tumor optical
properties are derived from measured data by fitting the flux
density of transmitted photons predicted by forward models
based on the diffusion approximation. Early approaches to
generate optical mammograms displaying tissue optical

properties from coaxial scanning data were based on a ho-
mogeneous infinite slab as a simplified model for a tumor-
bearing, compressed breast �13�. However, this model yields
only average optical properties, with rather uncertain infor-
mation on the absorption and scattering properties of lesions.
Consequently, more realistic models were applied represent-
ing tumor-bearing breasts as a partially homogeneous slab
containing one or several heterogeneities with optical prop-
erties differing from those of the surrounding background
medium. Linear perturbation theory, i.e., Born approximation
of the optical diffusion equation, was used to derive tumor
optical properties and to generate optical projection mammo-
grams displaying tissue optical properties �14–20� at im-
proved contrast. However, linear perturbation theory might
fail to precisely derive the absorption coefficients of strongly
absorbing heterogeneities or inclusions of considerable size,
a situation often encountered with tumors detected by optical
mammography. Furthermore, linear perturbation theory
might not be applicable when several inhomogeneities are
present as pointed out by Arridge et al. �21�. Therefore, sev-
eral attempts were made to develop forward models beyond
the linear approximation. Ostermeyer and Jacques �17� de-
veloped higher-order perturbation theory in frequency do-
main accounting for the presence of absorbing and scattering
inhomogeneities embedded in an infinite medium. For this
purpose these authors introduced virtual source strengths be-
ing either proportional to the �unknown� fluence or to its
gradient and solved for the perturbed fluence by numerical
iteration. The results obtained in this way for embedded, ho-
mogeneous spherical absorbers and scatterers were compared
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with the solution of the diffusion equation based on the dif-
fraction of diffuse photon density waves �DPDW� by a
spherical heterogeneity. The perturbation of the fluence ex-
hibits a monopole pattern in case of an absorber, whereas a
scatterer produces predominantly a dipolar pattern corre-
sponding to a surface-induced backscattering. A rather accu-
rate, yet empirical nonlinear approach based on the method
of Padé approximants was introduced by Torricelli et al.
�22,23�. As discussed below, the Padé expression works gen-
erally well for pure absorbers, i.e., it never yields negative
values for the time-resolved transmittance, a problem en-
countered with linear perturbation theory for sufficiently
strong absorbers. However, the empirical approach may fail
for inhomogeneities with lower scattering or absorption com-
pared to the surrounding medium.

Recently, general expressions for transmitted time-domain
photon flux densities based on second- and higher-order per-
turbation theory were reported by Wassermann �24�. The
present paper critically assesses second- and third-order
time-domain perturbation theory on breast-equivalent phan-
toms for deriving optical properties of tumor-simulating het-
erogeneities. Both simulated photon flux densities obtained
from FEM calculations on virtual �numerical� phantoms and
measured temporal point spread �TPS� functions, i.e., distri-
butions of times of flight of photons, using physical phan-
toms were analyzed in this way. The results obtained are
compared either with known optical properties of the spheri-
cal heterogeneity or with those derived using the diffraction
of DPDW as exact forward model �10,13,25–28�. For this
purpose, a partially homogeneous infinite slab carrying a
�homogeneous� spherical heterogeneity as absorber was se-
lected to simulate a tumor-bearing compressed breast, al-
though perturbation theory allows us to analyze arbitrary
shapes of heterogeneities as well. Whereas virtual and physi-
cal phantom studies allow us to assess limitations of first-
and higher-order perturbation theory including Padé approxi-
mants, only limited information can be obtained in this way
whether such models are suited to analyze in vivo data for
tumor optical properties. The extent to which deficiencies of
the various forward models affect the analysis of optical
mammograms depends on the distributions of size and opti-
cal properties of tumors that are generally detected by optical
mammography. Therefore we reanalyzed about 140 optical
mammograms of tumor-bearing breasts that had been re-
corded during a previous clinical trial on optical mammog-
raphy �6� and compared the results on 87 tumors obtained
from perturbation theory with their optical properties that
had been derived previously from the same data using the
diffraction of DPDW as forward model �29�. In this way we
estimated the extent to which perturbation theory and Padé
approximants can be expected to yield meaningful optical
properties of tumors when used as forward models in the
analysis of in vivo optical data.

The paper is organized as follows. In Sec. II we outline
our method for calculating second- and higher-order contri-
butions to perturbed transmittance, being more efficient than
using the formulas of Wassermann �24�. In addition we
briefly compare our approach to solve for the perturbed pho-
ton density with the method of Ostermeyer and Jacques �17�.
Section III deals with numerical forward simulations using

perturbation theory up to third order, including Padé approxi-
mants, and with the analysis of simulated FEM data for the
optical properties of the heterogeneity. Section IV describes
phantom measurements including the reconstruction of opti-
cal properties of spherical heterogeneities from measured
TPS functions and from simulated photon flux densities ap-
plying perturbation theory, Padé approximants, and diffrac-
tion of DPDW, discussing the limitations of the various for-
ward models used. In Sec. V we reanalyze the majority of
our optical mammograms of tumor-bearing breasts for tumor
optical properties using perturbation theory up to third order
and Padé approximants and compare the tumor optical prop-
erties obtained from perturbation theory with our diffraction
results published previously �29�. A brief discussion �Sec.
VI� summarizes the results obtained in this paper and their
impact on data analysis of time-domain optical mammo-
grams for tumor optical properties.

II. THEORY

Breast tissue is highly scattering but weakly absorbing in
the near infrared spectral range and propagation of red or
near infrared light in this type of tissue can be described by
the optical diffusion equation �30�. Here we consider a
tumor-bearing breast compressed between two parallel glass
plates as partially homogeneous infinite slab of thickness d
with a spherical heterogeneity of volume V= �4� /3�Rimp

3

with sharp boundaries. The absorption coefficient �a0 and
the reduced scattering coefficient �s0� denote the background
optical properties of the homogeneous part of the slab and
the absorption coefficient �a=�a0+��a and reduced scatter-
ing coefficient �s�=�s0� +��s� of the heterogeneity represent
perturbations. The dynamic diffusion coefficient of the back-
ground medium is given by D0=1 / �3�s0� � and, likewise, that
of the heterogeneity by D=D0+�D=1 / �3�s�� �31,32�. In this
case the Born series is a power series in changes ��a of the
absorption coefficient and changes �D of the diffusion coef-
ficient. In this section, the corrections to time-resolved pho-
ton density up to second order of this series are given and the
convergence of the Born series for pure absorbers is dis-
cussed more generally on the expression for the corrections
of order N.

A. Corrections to time-resolved photon density up to second
order

The total photon density ��r� , t� is expressed as the sum of
the photon density �0�r� , t� of the homogeneous slab and the
perturbation ���r� , t� due to an absorbing and scattering het-
erogeneity

��r�,t� = �0�r�,t� + ���r�,t� , �1�

where

���r�,t� = − ��a�
V

dVp�
0

t

dtpGslab�r�,t;r�p,tp���r�p,tp�

− �D�
V

dVp�
0

t

dtp�pGslab�r�,t;r�p,tp� · �p��r�p,tp� .

�2�

The Green’s function Gslab�r� , t ;r�� , t�� of an infinite homoge-
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neous slab entering Eq. �2� can be derived from the one for
an infinite medium by introducing positively and negatively
counted mirror photon sources and sinks �14,33�. The
Green’s function Gslab�r� , t ;r�0 ,0� describes the fluence in a
homogeneous slab after excitation by a temporal and spatial
� pulse at position r�0= �0,0 ,z0� with z0=1 /�s0� . Following
the perturbational approach outlined by Arridge �14,21�, first
and higher corrections can be written as

���r�,t� = ��a
�1��r�,t� + ��D

�1��r�,t� + ��aa
�2��r�,t� + ��aD

�2��r�,t�

+ ��Da
�2��r�,t� + ��DD

�2� �r�,t� + ��aaa
�3� �r�,t� + ¯ , �3�

where ��a
�1��r� , t� is the term proportional to ��a, ��D

�1��r� , t�
��D, ��aD

�2��r� , t����a�D, and so on. At the detector, the
change in transmission, i.e., the change in the transmitted
photon flux density along the outward pointing normal �posi-
tive z axis�, is calculated from the changes in photon density
by

�T�r�det,t� = � − vD0�����xdet,ydet,z,t��/�z�z=d, �4�

where r�det= �xdet ,ydet ,d� denotes the position of the detector
and v the speed of light in the medium. For the slab geom-
etry, extended boundary conditions are usually invoked to
account for refractive index changes between tissue and the
surrounding medium �34�. In this model the photon density
falls to zero at virtual boundaries located at z=−ze and z=d
+ze. Since the distance ze is rather small, transmission
changes can conveniently be calculated from

�T�r�det,t� = vD0���r�det,t�/ze. �5�

This approach is numerically more efficient than to use Eq.
�4� since explicit formulas for contributions to the transmit-
ted photon flux density are substantially more complicated,
obtained by differentiation of the corresponding contribu-
tions to the transmitted photon density.

Assuming �0�r� , t�=Gslab�r� , t ;r�0 ,0� /v without loss of gen-
erality the various changes in photon density corresponding
to different orders of perturbation theory can thus be ex-
pressed as the sum over mirror images, yielding up to second
order

��a
�1��r�det,t� = �

n,k=−�

�

�
�,	=0,1

�− 1��+	In,kabs

�	�1�
�r�det,t�

= �ze/�vD0����afa
�1��r�det,t� , �6�

��D
�1��r�det,t� = �

n,k=−�

�

�
�,	=0,1

�− 1��+	In,kscat

�	�1�
�r�det,t�

= �ze/�vD0���DfD
�1��r�det,t� , �7�

��aa
�2��r�det,t� = �

m,n,k=−�

�

�
�,	,
=0,1

�− 1��+	+
Im,n,kabs-abs

�	
�2�
�r�det,t�

= �ze/�vD0�����a�2faa
�2��r�det,t� , �8�

��aD
�2��r�det,t� = �

m,n,k=−�

�

�
�,	,
=0,1

�− 1��+	+
Im,n,kabs-scat

�	
�2�
�r�det,t�

= �ze/�vD0����a�DfaD
�2��r�det,t� , �9�

��Da
�2��r�det,t� = �

m,n,k=−�

�

�
�,	,
=0,1

�− 1��+	+
Im,n,kscat-abs

�	
�2�
�r�det,t�

= �ze/�vD0����a�DfDa
�2��r�det,t� , �10�

��DD
�2� �r�det,t� = �

m,n,k=−�

�

�
�,	,
=0,1

�− 1��+	+
Im,n,kscat-scat

�	
�2�
�r�det,t�

= �ze/�vD0����D�2fDD
�2� �r�det,t� . �11�

Explicit formulas for the contributions I�1,2��r�det , t� to the
transmitted photon density are given in Appendix A �for no-
tations, consistent with Ref. �24�, see Table I�. Second-order
contributions �see Eqs. �A3�–�A6�� contain double volume
integrals over positions r�p ,r�q located within the heterogene-
ity. It is shown in Appendix A that even in case both posi-
tions coincide �r�p=r�q� all volume integrals are integrable
contrary to Ref. �24� where a logarithmic singularity was
claimed to occur for the scattering-scattering contribution.
The so-called shape functions fa

�1�, fD
�1�, faa

�2�,… do not depend
on ��a or �D �16,20�. Approximate scaling relations for
these shape functions are discussed in Appendix A that can
be exploited when background optical properties are

TABLE I. Notations of distances, vectors, and their dot
products.

Second order Higher order

r�qk

 =r�q−R� 0k


 r�p,mp

± =r�p+1−R� p,mp

±

r�pn
	 =r�p−R� qn

	 with p=0, . . .N; mp=−� , . . . ,�

r�m
� =r�det−R� pm

� r�N+1=r�det

R� 0k
+ =r�0+2k�d+2ze�e�z R� p,mp

+ =r�p+2mp�d+2ze�e�z

R� qn
+ =r�q+2n�d+2ze�e�z

R� pm
+ =r�p+2m�d+2ze�e�z

R� 0k
− =r�0+2�k�d+2ze�−ze−z0�e�z R� p,mp

− =r�p+2�mp�d+2ze�−ze−zp�e�z

R� qn
− =r�q+2�n�d+2ze�−ze−zq�e�z

R� pm
− =r�p+2�m�d+2ze�−ze−zp�e�z

r�m
*�= 	xm ,ym , �−1��zm

�
 note that in first order

r�pn
*	= 	xpn ,ypn , �−1�	zpn

	 
 p=1⇔ p

r�qk
**
= 	xqk ,yqk , �−1�	zqk


 
 m0 ,m1⇔k ,n

rJpq
*=r�pn

*	 ·r�qk

 �0 ,�1⇔	 ,�

rJpm
*=r�pn

	 ·r�m
*� in second order

rJqm
**=r�m

*� ·r�qk
**
 p=1, p=2⇔q , p

rpq
+ =rpn

	 +rqk

 m0 ,m1 ,m2⇔k ,n ,m

rpqm=rpq
+ +rm

� �0 ,�1 ,�2⇔
 ,	 ,�
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changed, but the overall geometry is kept fixed.
We conclude this section by relating our results to the

results obtained previously by other authors. In Ref. �24� the
same approach was followed, yet explicit formulas for con-
tributions to transmitted photon flux density were derived by
analytical differentiation according to Eq. �4�. We compared
numerical results obtained by both methods and found them
to agree. Furthermore, we relate our approach to the results
of Ostermeyer and Jacques �17�, who developed higher-order
perturbation theory in frequency domain accounting for the
presence of absorbing and scattering inhomogeneities em-
bedded in an infinite medium. Equivalent to Eq. �2� the cor-
rection ���r� , t� may be expressed in terms of virtual source
densities S�

virt�r� , t� and SJ
virt�r� , t� as

���r�,t� = �
V

dVp�
0

t

dtpGslab�r�,t;r�p,tp�S�
virt�r�p,tp�

+ �
V

dVp�
0

t

dtpGslab�r�,t;r�p,tp�SJ
virt�r�p,tp� ,

�12�

where

S�
virt�r�p,tp� =

�a0�D − D0��a

D0 + �D
��r�p,tp�

+
�D

v�D0 + �D�
���r�p,tp�

�tp
, �13�

SJ
virt�r�p,tp� =

D0

D0 + �D
�p�D�r�p� · �p��r�p,tp� . �14�

The virtual source densities S�
virt�r�p , tp� and SJ

virt�r�p , tp� are
proportional to the Fourier transforms of the corresponding
source densities defined in frequency domain in Ref. �17�.
However, since we use the expression D=1 / �3�s�� rather
than D=1 / �3��a+�s��� employed by Ostermeyer and
Jacques, the virtual source density SJ

virt�r�p , tp� given in Eq.
�14� does not depend on ��a.

B. Convergence of Born series for pure absorbers

Aside from computational efforts to calculate higher-order
corrections the question arises whether such contributions
lead to substantial improvements or not. Therefore, it is de-
sirable to estimate the conditions required for the Born series
to converge. The general expression describing the Nth order
correction to the transmitted photon density for a pure ab-
sorber was reported by Wassermann �24� to be

��abs
�N��r�det,t� = �

m0,. . .,mN=−�

�

�
�0,. . .,�N=0,1

�− 1��0+¯+�NIm0,….,mN

�0,. . .,�N �N�,

�15�

Im0,….,mN

�0,. . .,�N �N� =
e−�a0vt

�4�D0vt�3/2�− ��a

4�D0
�N�

V

. . . �
V

. . . �
V

�
p=0

N

rp,mp

�p



p=0

N

rp,mp

�p

�exp�−

��
p=0

N

rp,mp

�p �2

4D0vt
�dNV , �16�

where dNV=dV1dV2¯dVN and other notations used are de-
fined in Table I. In Ref. �24� it was shown that the terms
given in Eq. �16� are finite. However, in order to estimate
convergence one has to prove that the terms vanish suffi-
ciently fast with increasing order N. In Appendix B we pro-
vide upper limits for �Im0,….,mN

�0,. . .,�N�N�� and derive the following
Cauchy criterion �Cauchy ratio test �35�� for the convergence
of the Born series of a pure absorbing heterogeneity to be

CCauchy � ���a�Rimp
2 /�2D0� � 1. �17�

For values ��a=0.04 cm−1, D0=0.03 cm, the critical
value of Rimp is 1.2 cm, which is typical for the size of tu-
mors detected by optical mammography as discussed below.
An increase of ��a by a factor of 2 reduces the acceptable
size of the absorbing object to Rimp=0.9 cm to assure con-
vergence of the Born series. The numerical and experimental
results discussed below clearly indicate that application of
perturbation theory does not make much sense when the cri-
terion given in Eq. �17� is strongly violated.

III. NUMERICAL FORWARD CALCULATIONS AND
ANALYSIS OF SIMULATED DATA

For the evaluation of second- and third-order perturbation
analysis we calculated time-resolved flux densities of trans-
mitted photons using a virtual phantom that resembles the
physical phantom used in the experiments discussed below.
The virtual phantom was realized by forward calculations
considering a diffusely scattering slab �12�12 cm2, thick-
ness d=6 cm� with background optical properties �a0
=0.045 cm−1 and �s0� =9.4 cm−1, close to experimental val-
ues. Spheres of various radii Rimp=0.5. . .1.5 cm are located
at its center with optical properties �a=�a0+��a and �s�
=�s0� +��s�. The indices of refraction inside and outside the
phantom model were set to nint=1.33 and next=1.5 to simu-
late the scattering solution and the glass plates of the cuvette
used in the real experiments. Assuming a �-like point source,
TPS functions were calculated for the on-axis geometry only.

A. Comparison of forward simulations based on perturbation
theory and FEM model

Forward simulations were based on perturbation theory
up to second order for absorption and scattering changes, and
up to third order for inhomogeneities representing pure ab-
sorbers. Second �f �2��t�� and third �faaa

�3� �t�� order shape func-
tions were calculated on a personal computer with one Pen-
tium 4 �3 GHz� processor. Dividing each spatial coordinate
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�x ,y ,z� into 11 bins, the kernels of the double �second order�
and triple �third order� volume integrals need to be calculated
for a total of 116 and 119 voxels, respectively. As expected,
not all terms Im0,….,mN

�0,. . .,�N �N� contribute significantly to the
change in the transmitted photon flux density, drastically lim-
iting the number of terms to be evaluated. For example, in
third order only 4 terms �I0,0,0,0

0,0,0,0 , I0,0,0,0
1,0,0,0 , I0,0,0,1

0,0,0,1 , I0,0,0,1
1,0,0,1� con-

tribute significantly to faaa
�3� �t�. Taking only two dipoles �pho-

ton source and sink�, the spherical heterogeneity proper and
four mirrored spheres into account, at each time t about
240 s of computational time were required to calculate
faaa

�3� �t�, whereas second-order shape functions f �2��t� were
evaluated within seconds for a given time t, e.g., 9 s for
faa

�2��t� and 22 s for fDD
�2� �t�. On the other hand, at each time t

first-order shape functions fa
�1��t� and fD

�1��t� were calculated
within 35 ms.

Additionally, FEM simulations were carried out for com-
parison by numerically solving the diffusion equation, using
partial current boundary conditions �34�. The three-
dimensional �3D� FEM mesh was generated from tetrahedral
elements and was refined in the vicinity of the photon source
and within the spheres, in the latter case to account for the
size of the spherical inhomogeneities with sufficient preci-
sion. A separate mesh was generated for each of the three
spheres of different size consisting of about 33 000 nodes
and 180 000 elements. The meshes were generated using the
software package ANSYS �ANSYS Inc., Canonsburg, PA,
USA� and used together with the FEM package TOAST

�36,37�. At increments of 10 ps a total of 1150 s of compu-
tational time were required to generate an entire profile of
transmitted photon flux density extending over 8 ns. For a
comparison of transmitted photon flux densities obtained
from FEM calculations with analytical results, the FEM pho-
ton flux densities had to be shifted in time by several tens of
ps to obtain agreement.

To illustrate the convergence of the Born series, Fig. 1
compares time-resolved transmitted photon flux density �e.g.,

Ttotal
�2� �t�=T0�t�+�Ta

�1��t�+�Taa
�2��t�� calculated up to first, sec-

ond, and third order with FEM simulations representing the
true solution of the diffusion equation, assuming a purely
absorbing sphere ���a=0.07 cm−1, Rimp=1 cm�. Computa-
tional times �80 time points� amounted to 3 s �first order�,
12 min �second order�, and 320 min �third order�. In addition
the photon flux density T0�t� transmitted through the homo-
geneous slab is included in Fig. 1 and all results shown are
normalized to the maximum of T0�t�, occuring at t= tmax,0. As
can be seen, first-order perturbation theory underestimates
the transmitted photon flux density. The second-order ap-
proximation overcompensates this error to some extent,
whereas transmitted photon flux density calculated up to
third-order almost quantitatively agrees with the FEM result.
This behavior illustrates the alternating contributions of odd
and even terms to the Born series. An analogous comparison
of time-resolved transmitted photon flux densities obtained
from first- and second-order perturbation theory with FEM
results for a pure scatterer �Rimp=1 cm� shows almost quan-
titative agreement ���s�= +4 cm−1� or a slight overestimation
of the amplitude ���s�=−4 cm−1�.

As was mentioned in Sec. II A the innermost volume in-
tegrals of the expressions for the second-order shape func-
tions, in particular for the most critical scattering-scattering
contribution fDD

�2� �r�det , t� are integrable at r�p=r�q �see Appendix
A�. In order to check convergence when numerically evalu-
ating the innermost integral for fDD

�2� �r�det , t�, we assumed typi-
cal values for the absorption and reduced scattering coeffi-
cients ��a0=0.045 cm−1, �s0� =9.4 cm−1�, selected the time t
=2 ns and a cube of edge length 0.5 cm, centered at r�p=r�q.
The value of the innermost integral was evaluated at discreti-
zations ranging between 2 mm and 20 �m, omitting the cen-
tral voxel in each case. In this way the discretization error of
the innermost integral of fDD

�2� �r�det , t=2 ns� was found to be
3% and 0.03% at discretizations of 1 mm and 0.1 mm, re-
spectively, illustrating rapid convergence.

Figures 2�a�–2�d� compare transmitted photon flux densi-
ties calculated by various orders of perturbation theory in-
cluding Padé approximants with FEM results over a range of
absorption changes ��a �Figs. 2�a� and 2�b�� of pure absorb-
ers and changes ��s� of the reduced scattering coefficient of
pure scatterers �Figs. 2�c� and 2�d�� with radii Rimp=1 cm
�Figs. 2�a� and 2�c�� and Rimp=1.5 cm �Figs. 2�b� and 2�d��.
In Fig. 2 relative changes �
T /T0��tmax,0�= �Ttotal�tmax,0�
−T0�tmax,0�� /T0�tmax,0� of the transmitted photon flux density
Ttotal�t� are shown, taken at the time t= tmax,0. As can be seen
from Figs. 2�a� and 2�b� linear perturbation theory predicts
zero transmitted photon flux density for absorption changes
��a=0.17 cm−1 �Rimp=1 cm� and ��a=0.06 cm−1 �Rimp

=1.5 cm�, respectively, and even negative values for absorp-
tion changes beyond these values �breakdown limits L1�,
clearly illustrating the complete breakdown of linear pertur-
bation theory in these cases. Second-order perturbation
theory improves the agreement of 
T /T0 with the FEM re-
sults �Figs. 2�a� and 2�b��, extending the validity of pertur-
bation theory to larger absorption changes. However, for a
radius of Rimp=1 cm �Rimp=1.5 cm� second-order perturba-
tion theory predicts minima of 
T /T0 at absorption changes
of ��a

min=0.10 cm−1 ���a
min=0.05 cm−1�. Absorption
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FIG. 1. Simulated time-domain photon flux densities through a
partially homogeneous slab bearing a spherical heterogeneity
�Rimp=1.0 cm, zimp=3 cm, d=6 cm, on-axis geometry, �a0

=0.045 cm−1, �s0� =9.4 cm−1, ��a= +0.07 cm−1, ��s�=0 cm−1� us-
ing various forward models. All curves are normalized to the am-
plitude T0�tmax,0� of the photon flux density T0 �dash-dotted line�
transmitted through a homogeneous slab, shown for comparison.
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changes of the spherical heterogeneity beyond the break-
down limits L2 will cause transmitted photon flux density to
rise again, in contradiction to physical experience, marking
the complete breakdown of perturbation theory of second
order. It follows from Figs. 2�a� and 2�b� that second-order
perturbation theory cannot account for changes 
T /T0
�−0.28 �Rimp=1 cm� and 
T /T0�−0.42 �Rimp=1.5 cm�, re-
spectively. Similar to first-order theory, third-order perturba-
tion theory predicts negative values of 
T /T0 for absorption
changes exceeding ��a=0.21 cm−1 �Rimp=1 cm� or ��a

=0.095 cm−1 �Rimp=1.5 cm�, again marking the complete
breakdown of perturbation theory carried up to third order
�breakdown limits L3�. It follows from Figs. 2�a� and 2�b�
that second and third order extend the validity of first-order
theory to some extent. Considering �
T /T0��t� at a time t
other than tmax,0, or even the time-integrated transmitted pho-

ton flux density 
T̄ / T̄0= �T̄total− T̄0� / T̄0� for comparison, will
cause quantitative changes in Figs. 2�a� and 2�b� but will not
affect the general features. When choosing �
T /T0��t� at t

� tmax,0 or 
T̄ / T̄0 for comparison, the breakdown limits L1,

L2, and L3 shift to slightly smaller absorption changes, par-
ticularly for the third-order correction, since close to its
breakdown limit ��aaa

�3� �t� leads to appreciable changes in the
pulse shape of Ttotal�t�. In Figs. 2�c� and 2�d� values of
�
T /T0��tmax,0� are shown for a range of changes ��s� in the
reduced scattering coefficient, typically observed in tumors.
Within this range, first- and second-order perturbation theory
provide reasonably accurate values of 
T /T0. From a prac-
tical point of view there is little advantage to be expected
from a more elaborate perturbation theory covering higher-
order corrections of scattering changes.

Besides results of perturbation theory we include in Fig. 2
values of 
T /T0 obtained by the method of Padé approxi-
mants. This method expresses transmitted photon flux den-
sity as

TPadé = T0�1 − �T�1�/T0�−1 �18�

and is based on an empirical modification of linear perturba-
tion calculations intended to lift the saturation behavior �see
below� of the Born approximation for increased ���a�0�

FIG. 2. Normalized changes of transmitted photon flux density �Ttotal−T0� /T0 through partially homogeneous slab �same geometry and
parameters as Fig. 1 unless stated otherwise� at time t= tmax,0 versus changes in absorption and scattering of spherical heterogeneity over
background values. Transmitted flux densities simulated by various forward models assuming �a� radius Rimp=1.0 cm, ��s�=0 cm−1 �pure
absorber�; �b� radius Rimp=1.5 cm, ��s�=0 cm−1; �c� radius Rimp=1.0 cm, ��a=0 cm−1 �pure scatterer�; �d� radius Rimp=1.5 cm, ��a

=0 cm−1. Results obtained from third-order perturbation theory are given for pure absorbers only. Breakdown limits of first-, second-, and
third-order perturbation theories are indicated by arrows in �a� and �b�.
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absorption �22�. Computational efforts required for the Padé
approximants are the same as for first-order perturbation
theory. By definition, Eq. �18� never produces negative val-
ues of the transmitted photon flux density in this case. As can
be seen from Fig. 2 values of 
T /T0 obtained in this way
closely approach the FEM results for increased absorption or
larger scattering ���a�0, ��s��0�. However, the expression
given in Eq. �18� has a pole for �T�1��0 and, therefore, fails
at lower absorption or scattering of the heterogeneity com-
pared to the bulk values. In particular, cysts often exhibiting
lower scattering, cannot be analyzed by the Padé approach.
On the other hand, tumors that are detected by optical mam-
mography lead to �T�1��0 and the Padé approach is ex-
pected to be applicable in these cases.

B. Inverse problem: Estimating optical properties of
inhomogeneities using perturbation theory

We used perturbation theory carried to first and second
order in scattering changes ��s� and up to third order in ab-
sorption changes ��a to analyze normalized FEM data
TFEM�t� /T0�tmax,0� for the optical properties of the spherical
inhomogeneities of radii Rimp=1 cm �Figs. 3�a� and 3�b�� and
Rimp=1.5 cm �Figs. 3�c� and 3�d��. Only FEM data corre-
sponding to pure absorbers and without any noise added
were analyzed in this way. Besides background optical prop-
erties, as well as location and size of the spherical inhomo-
geneities no further prior knowledge was included in the

analysis, i.e., the FEM data were analyzed simultaneously
for changes in absorption ���a� and scattering ���s�� of the
heterogeneities, a common situation encountered when ana-
lyzing in vivo data. The TPS functions were compared within
the range t1� t� t2, where t1 and t2 denote the times on the
leading and trailing edge of T0�t� corresponding to 20% and
5%, respectively, of the maximum amplitude T0�tmax,0�. Fig-
ures 3�a� and 3�c� compare absorption changes ��a derived
in this way with the values ��a

FEM used to generate the FEM
data, whereas associated reduced scattering coefficients ��s�
obtained from the fits are illustrated in Figs. 3�b� and 3�d�,
respectively. Since the FEM data analyzed correspond to
pure absorbers these changes in scattering represent artifacts,
compensating for model errors to some extent. As can be
seen from Fig. 3�a�, for the smaller sphere �Rimp=1 cm� ab-
sorption changes ��a derived by first-, second-, and third-
order perturbation theory quantitatively deviate from the
“true” values for ��a

FEM �0.03 cm−1, ��a
FEM �0.07 cm−1,

and ��a
FEM �0.08 cm−1, respectively. Likewise, for the larger

sphere �Rimp=1.5 cm� first-, second-, and third-order pertur-
bation theory underestimate changes in absorption for
��a

FEM �0.02 cm−1, ��a
FEM �0.04 cm−1, and ��a

FEM

�0.05 cm−1, respectively. The limiting values ��a
FEM

�0.07 cm−1 �second order, Rimp=1.0 cm�, ��a
FEM

�0.08 cm−1 �third order, Rimp=1.0 cm� and ��a
FEM

�0.04 cm−1 �second order, Rimp=1.5 cm�, ��a
FEM

�0.05 cm−1 �third order, Rimp=1.5 cm� are in close agree-
ment with the formal Cauchy convergence criterion
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FIG. 3. Reconstruction of optical properties ���a ,��s�� of spherical heterogeneities derived by fitting results obtained from perturbation
theory up to second order in scattering changes ���s�� and third order in absorption changes ���a� to simulated FEM data; �a�, �c� changes
in absorption coefficient ���a� and �b�, �d� associated changes in reduced scattering coefficient ���s�� obtained from fits versus “true”
absorption changes ��a

FEM used in FEM simulations for pure absorber ���s�
FEM =0�. Breakdown limits �see Figs. 2�a� and 2�b�� of first-,

second-, and third-order perturbation theory are indicated by vertical dashed lines labeled L1, L2, and L3, respectively. Geometry and
background optical properties same as for Figs. 1 and 2.
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�CCauchy=1� deduced above ���a=0.071 cm−1 for Rimp

=1 cm, ��a=0.032 cm−1 for Rimp=1.5 cm�. Figures 3�a� and
3�c� illustrate the saturation of the derived changes ��a in
absorption with increasing true absorption changes ��a

FEM.
For example, no values of ��a exceeding 0.07 cm−1 �Rimp

=1 cm� and ��a=0.035 cm−1 �Rimp=1.5 cm� were obtained
from the analysis using second-order perturbation theory as
forward model. These limits differ somewhat from the lim-
iting values ��a

min at which the minima occur in Figs. 2�a�
and 2�b� which relates to tmax,0 rather than to the range t1
� t� t2. When the absorption change ��a reconstructed by
second- and third-order perturbation theory levels off �see
Figs. 3�a� and 3�c��, a steep rise of the change of the reduced
scattering coefficient ��s� occurs �Figs. 3�b� and 3�d��. As
pointed out above, nonzero reduced scattering changes are
artifacts and transmitted photon flux densities calculated by
second- and third-order perturbation theory represent pro-
gressively poorer fits to the data beyond the limiting values
of ��a

FEM given above for both radii Rimp. In Fig. 3 the break-
down limits L1, L2, and L3 of first-, second-, and third-order
perturbation theory are indicated by vertical dashed lines for
comparison.

IV. PHANTOM MEASUREMENTS AND THEIR ANALYSIS
BY VARIOUS FORWARD MODELS

As diffusely scattering phantom we used a rectangular
glass cuvette �thickness d=6.0 cm� containing dilute milk
with spheres of radii 5 mm, 10 mm, and 15 mm, located at
its center which were made from agarose gel and served as
inhomogeneities �24,38�. The absorption coefficients and re-
duced scattering coefficients of the various agarose spheres
were taken to be the same as those of the corresponding
reference slab made from the same batch of material. All
reference slabs had virtually the same reduced scattering co-
efficient �s,ref� and their absorption coefficients ranged be-
tween �a

ref =0.08 cm−1 and �a
ref =0.20 cm−1. The amounts of

water and black India ink added to whole milk �3.5% fat�
were chosen to achieve a reduced scattering coefficient of
about �s0� =9.0 cm−1 and an absorption coefficient �a0
=0.043 cm−1, typical for breast tissue in the near infrared
spectral range.

A. Phantom measurements and data analysis

All measurements on phantoms were taken at �
=785 nm employing a mode-locked Ti:sapphire laser sys-
tem. TPS functions were measured using a fast photomulti-
plier and time correlated single photon counting. For record-
ing TPS functions perturbed by the spherical
inhomogeneities, the transmitting optical fiber and detecting
fiber were positioned opposite to each other on the entrance
window and exit window of the cuvette, respectively, ar-
ranged such that the center of the spherical heterogeneity
was located on the line-of-sight connecting both fibers �on-
axis arrangement�. TPS functions obtained in this way were
analyzed for the optical properties of the heterogeneity by
perturbation theory as described in the preceding section.
Background optical properties were measured with the aga-

rose spheres removed from the phantom using the model of a
homogeneous slab for analysis. Simulated time-resolved
photon flux densities were convolved with the measured in-
strumental response function �typical full width at half maxi-
mum �FWHM� 200 ps� prior to fitting simulated data to ex-
perimental data.

B. Optical properties of spherical inhomogeneities from
measured and simulated data

Optical properties of the spherical inhomogeneities were
derived from measured TPS functions using perturbation
theory up to second order in scattering and third order in
absorption, as well as employing Padé approximants and the
diffraction of DPDW as forward models. The model of dif-
fraction of DPDW expresses time-resolved flux density of
photons transmitted through the infinite slab as

TDPDW�t� = T0�t� + Tinh�t� �19�

where Tinh�t�=Tinh�r�0 ,r�imp ,r�det ,Rimp ,d ,�a0 ,�s0� ,�a ,�s� , t�
represents a correction to the transmitted photon flux density
accounting for the presence of the spherical heterogeneity of
radius Rimp at location r�imp and can be obtained from a partial
wave analysis performed in frequency domain �26,38�. In the
infinite medium the model of diffraction of DPDW is exact.
To obey the boundary conditions of the infinite slab, the
method of mirror sources and sinks is used, and correspond-
ing mirror spheres are generated. Therefore, photon density
waves propagating from the mirror sources are diffracted by
several spheres sequentially. However, only the first diffrac-
tion event is generally taken into account in the analysis and,
therefore, only an approximate solution is obtained in this
way for the diffraction of DPDW by a spherical heterogene-
ity in an infinite slab.

Figure 4 compares reconstructed absorption coefficients
�a of agarose spheres of various sizes with the absorption
coefficient �a

ref of the batch material the spheres were made
from. Absorption coefficients, represented by solid symbols,
were reconstructed from measured time-resolved transmit-
tance using the diffraction of DPDW, the Padé approximants,
as well as first-, second-, and third-order perturbation theory
as forward models. The measured optical properties of the
background medium ��a0= �0.043±0.002� cm−1, �s0�
= �9.0±0.5� cm−1, D0= ��0.037±0.002� cm��, as well as the
geometry of the phantom, i.e., the size and location of the
agarose spheres were included as prior knowledge in the re-
construction. The scattering properties of all agarose refer-
ence slabs were determined to be �s,ref� = �8.9±0.5� cm−1

�Dref = ��0.037±0.002� cm�� and, therefore, the agarose
spheres represent pure absorbers to good approximation, yet
this information was not included as prior knowledge in the
reconstruction, i.e., absorption and reduced scattering coeffi-
cients of the agarose spheres were reconstructed simulta-
neously. As discussed above �cf. Sec. III B� deviations of the
reconstructed reduced scattering coefficients of the agarose
spheres from the value �s,ref� =�s0� represent artifacts which
compensate for model errors. Likewise, absorption coeffi-
cients of spherical inhomogeneities of the virtual phantom
were reconstructed from FEM data without noise added and
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are represented by lines in Fig. 4. To this end transmitted
photon flux densities were simulated assuming spherical in-
homogeneities with the same scattering properties as the ref-
erence slabs �i.e., representing essentially pure absorbers�,
the same geometry of the phantom, including location of the
inhomogeneities and the same optical properties of the back-
ground medium as used in the experiments. In Fig. 4 the
vertical dashed lines labeled C indicate the Cauchy limit
CCauchy=��a

refRimp
2 / �2D0�=1, i.e., beyond which the Cauchy

convergence criterion is no longer fulfilled.
In Fig. 4�a� we plot reconstructed absorption coefficients

of agarose spheres made from the same batch material
��a

ref = �0.082±0.004� cm−1� and absorption coefficients of
spherical pure absorbers with the same absorption properties
reconstructed from FEM data versus radius Rimp. As can be

seen at the smallest radius �Rimp=0.5 cm� all models used to
reconstruct the absorption coefficient from measured data
lead to nearly the same value for �a that falls slightly below
�a

ref, represented by the horizontal dashed line. This discrep-
ancy is readily explained taking into account that the radius
of the smallest agarose sphere might not be known with suf-
ficient accuracy. For the larger agarose spheres, however,
absorption coefficients �a obtained from first-order perturba-
tion theory systematically fall below the reference value �a

ref.
At Rimp=1.5 cm first-order perturbation theory underesti-
mates �a by about 21%. For these weakly absorbing spheres
���a=0.039 cm−1� all other forward models yield absorption
coefficients in agreement with �a

ref within experimental error
limits. Absorption coefficients of spherical pure absorbers
reconstructed from FEM data provide the same general pic-
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FIG. 4. Reconstructed absorption coefficients �a of pure absorbers of various sizes at center �zimp=3 cm� of rectangular physical and
virtual phantom �d=6 cm, �a0=0.043 cm−1, �s0� =9.0 cm−1, on-axis geometry�; absorption coefficients of spherical absorbers reconstructed
by fitting results of various forward models to measured temporal point spread functions �symbols� and to simulated �FEM� transmitted
photon flux densities �lines�; vertical dashed lines labeled C correspond to Cauchy limit CCauchy=1, vertical dashed lines labeled L1, L2, and
L3 to breakdown limits of first-, second-, and third-order perturbation theory �see Figs. 2�a� and 2�b��; �a� reconstructed absorption coefficient
of spheres �Rimp=0.5 cm, 1.0 cm, 1.5 cm� made from same batch of agarose material ��a

ref =0.082 cm−1�; absorption coefficients of agarose
material and of background medium indicated by horizontal straight lines labeled �a

ref, �a0, respectively; �b� difference �a−�a
ref between

reconstructed absorption coefficient �a and true value of spherical absorbers �Rimp=1.0 cm�; �c� same plot as �b� but for Rimp=1.5 cm; results
of first-, second-, and third-order perturbation theory beyond their breakdown limits indicated as dashed lines �b�, �c� and by open symbols
�c�.
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ture, supporting our conclusions derived from the analysis of
experimental data. In particular, at larger radii first-order per-
turbation theory fails to correctly deduce the absorption co-
efficient �a

ref of the spherical inhomogeneities from simu-
lated transmitted photon flux densities, systematically
underestimating absorption, in agreement with Figs. 3�a� and
3�c�. We note in passing that first-, second-, and third-order
perturbation theory when used as forward models yield sat-
isfactory fits of calculated transmitted photon flux densities
to experimental and simulated data for these weakly absorb-
ing spheres.

In Figs. 4�b� and 4�c� we plot the difference �a−�a
ref be-

tween reconstructed absorption coefficients and reference
values versus �a

ref for the two larger spheres separately with
radii Rimp=1 cm �Fig. 4�b�� and Rimp=1.5 cm �Fig. 4�c��.
Generally, absorption coefficients reconstructed from mea-
sured TPS functions and from simulated FEM data convey
the same message. In each case the diffraction of DPDW
yields the expected absorption coefficient from experimental
data within experimental error limits. Likewise, this forward
model correctly reconstructs the absorption coefficients of
the spherical heterogeneities from simulated �FEM� data. On
the other hand, using Padé approximants to reconstruct ab-
sorption coefficients from measured or simulated data tends
to underestimate absorption of the sphere with Rimp=1 cm
�Fig. 4�b��, but systematically overestimates absorption coef-
ficients of the largest heterogeneity at high absorption �Rimp
=1.5 cm, Fig. 4�c��, consistent with Fig. 2�a� and 2�b�, re-
spectively. Again, first-order perturbation theory generally
underestimates the absorption coefficient �a of the agarose
spheres and, likewise, of spherical inhomogeneities of the
virtual phantom. Results of first-order perturbation theory
beyond its breakdown limit L1 �see Fig. 4�c�� are indicated
by open symbols �experimental data� and by dashed lines
�simulated data�. Second-order perturbation theory yields
agreement within experimental accuracy at the lowest ab-
sorption ��a

ref =0.082 cm−1� for all agarose spheres investi-
gated �Rimp=0.5 cm, 1.0 cm, 1.5 cm� and at the next higher
absorption coefficient �a

ref =0.124 cm−1 for the agarose
spheres with radius Rimp=0.5 cm �not shown� and Rimp
=1 cm. For all other experimental and simulated situations
related to Figs. 4�b� and 4�c� the absorption coefficient �a

ref

exceeds the breakdown limits L2 of second-order perturba-
tion theory, i.e., at which the minima �see Figs. 2�a� and 2�b��
in 
T /T0= �Ttotal

�2� −T0� /T0 occur. These limits are indicated in
Figs. 4�b� and 4�c� by vertical dashed lines. Beyond these
limits no satisfactory fits of time-resolved photon flux densi-
ties calculated by second-order perturbation theory to simu-
lated data could be obtained and absorption coefficients in-
cluded in Figs. 4�b� and 4�c� beyond these limits are
indicated by dashed lines. For example, at �a

ref =0.124 cm−1

a sphere of radius Rimp=1.5 cm causes a reduction of the
peak value of the transmitted time-resolved photon flux den-
sity from the homogeneous value beyond the limit 
T /T0
=−0.42 that can at most be explained by second-order per-
turbation theory �see minimum in Fig. 2�b��. For Rimp
=1 cm third-order perturbation theory yields acceptable fits
of calculated time-dependent photon flux densities to mea-
sured TPS functions or simulated FEM data over the full

range of absorption coefficients �a
ref covered in Fig. 4�b�,

consistent with Figs. 2�a� and 3�b�. However, higher absorp-
tion coefficients �a are considerably underestimated, e.g., at
�a

ref =0.19 cm−1 by about 30%. This picture progressively
deteriorates for the largest sphere �Rimp=1.5 cm�. As dis-
cussed above, third-order perturbation theory totally breaks
down at �a

ref =0.14 cm−1 �breakdown limit L3�. However,
when approaching this limit ��a

ref �0.14 cm−1� third-order
contributions considerably modify the shape of the transmit-
ted photon flux density, and calculated photon flux densities
no longer show the typical pulse shape of TPS functions,
leading to unacceptable fits to measured data or FEM data. It
follows that model errors can no longer be compensated for
by a change in the reduced scattering coefficient from the
true value to produce the correct line shape. Consistent with
Fig. 3�d�, results of third-order perturbation theory beyond
the breakdown limit L3 are indicated by dashed lines in Fig.
4�c�. Furthermore, for the largest agarose sphere �Rimp

=1.5 cm� with the highest absorption coefficient ��a
ref

=0.19 cm−1� studied experimentally the ratio CCauchy

=��a
refRimp

2 / �2D0� associated with the Cauchy convergence
criterion amounts to about 5, indicating severe convergence
problems. Although second- and third-order extend the range
of validity of perturbation theory to cover larger absorption
changes and sizes of the �spherical� inhomogeneities relevant
for optical mammography, it follows from Figs. 4�b� and 4�c�
that the gain in accuracy of the numerical results over those
obtained from simple first-order theory is limited, a conclu-
sion also evident from Figs. 2�a� and 2�b�. In summary, the
reconstruction of optical properties of spherical inhomogene-
ities from experimental data yields the same ranges of valid-
ity of first-, second-, and third-order perturbation theory as
obtained from simulated FEM data. Taking experimental un-
certainties of phantom data into account, amounting typically
to 10–15 %, the limit of validity of higher-order perturbation
analyses may extend in practice to slightly higher values of
��a.

We conclude this section by commenting on Fig. 4 of Ref.
�24� which is closely related to our Fig. 4. Without critically
assessing the results of his analysis of measured TPS func-
tions, Wassermann included reconstructed absorption coeffi-
cients of spherical heterogeneities using second-order �see
Fig. 4�b�, �a

ref =0.19 cm−1 and Fig. 4�c�, �a
ref =0.124 cm−1,

0.19 cm−1 of Ref. �24�� and third-order �see Fig. 4�c�, �a
ref

=0.19 cm−1 of Ref. �24�� perturbation theory that were be-
yond their ranges of validity as discussed above and were
therefore omitted in our Figs. 4�b� and 4�c�. Furthermore,
whereas our results clearly show the superiority of DPDW as
forward model to reconstruct the absorption coefficient of
spherical absorbers from phantom measurements, in Fig. 4 of
Ref. �24� absorption coefficients reconstructed by using
DPDW differ appreciably from the true absorption coeffi-
cients and are thus in error.

V. TUMOR OPTICAL PROPERTIES FROM
PERTURBATION THEORY, PADÉ APPROXIMANTS, AND

DIFFRACTION OF DPDW

Limitations of perturbation theory to derive tumor optical
properties from optical mammograms will depend on tumor
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and background optical properties, in particular on tumor
contrast and background inhomogeneity as well as on tumor
size and tumor location. Although phantom measurements
yield insights into the limitations of the various methods of
analysis, such measurements cannot mimic entirely the
in vivo situation. In order to assess to what extent perturba-
tion theory carried up to various orders is suited to derive
tumor optical properties, analysis of a large number of opti-
cal mammograms has been performed. For this purpose we
use perturbation theory as well as Padé approximants to re-
analyze in vivo data from our previous clinical trial on opti-
cal mammography �6� to derive tumor optical properties at
785 nm and compare the results with the tumor absorption
coefficients �a,T

DPDW obtained previously �29�.
During the clinical trial craniocaudal �cc� and mediolat-

eral �ml� projection optical mammograms of 154 patients,
suspected to have breast cancer were recorded at selected
near infrared wavelengths �e.g., 670 nm, 785 nm� �6�.
Among the 96 tumors validated by histology that had been
investigated at two or three wavelengths, 88 tumors could be
detected retrospectively in projection optical mammograms
�70 tumors in cc and ml projections, additional 18 tumors in
one projection only�. Apart from one case, absorption
��a,T

DPDW� and reduced scattering ��s,T�DPDW� coefficients of
these tumors were derived from temporal point spread func-
tions recorded at the tumor site and amounting to typically
250 000 photons detected at each wavelength. A total of 151
projection mammograms of tumor-bearing breasts were ana-
lyzed successfully in this way for tumor optical properties
�29�. To this end the compressed breast was modeled as par-
tially homogeneous infinite slab of thickness d with back-
ground optical properties �a,local, �s,local� employing the dif-
fraction of DPDW by a spherical heterogeneity as forward
model representing the tumor. The tissue optical properties
�a,local, �s,local� were derived from temporal point spread
functions measured within an area of the particular optical
mammogram which surrounded the tumor, and the actual
breast thickness at the tumor site was inferred from first mo-
ments of measured TPS functions as described in Ref. �13�.
Effective tumor radii RT, taken from pathology, and tumor
locations zT along the compression direction, deduced from
off-axis optical scans of the tumor region, were included in

the analysis as prior knowledge, whenever available �29�.
For illustration, Figs. 5�a� and 5�b� display histograms of
effective tumor radii RT, and tumor absorption contrast, re-
spectively, of the 151 tumor-bearing mammograms. Tumor
absorption contrast, expressed as �a,T

DPDW /�a,local �785 nm�,
was reported to be about 2 on average at 785 nm �29,39�.
The effective tumor radius of an isovolumetric sphere was
calculated from tumor extensions provided by histopathol-
ogy. For the tumors considered here the median of the ratio
of long to short extensions amounted to about 1.3.

To analyze the in vivo data by perturbation theory, first-
order �f �1��t��, second-order �f �2��t��, and third-order
�faaa

�3� �t�� shape functions �Eqs. �6�–�11�� were calculated for
148 tumor bearing projection mammograms that had previ-
ously been analyzed by the diffraction model at tolerable �2

values ��2�100�. For our present analysis the same tissue
model was adopted as before, i.e., in each case we modeled
the compressed tumor-bearing breast as partially homoge-
neous infinite slab with a spherical heterogeneity represent-
ing the tumor, used the same breast thickness d at the tumor
site, the same �local� background optical properties �a,local,
�s,local� , the same effective tumor radius RT, and the same
tumor location zT along the compression direction. First-,
second-, and third-order shape functions were calculated for
each mammogram, requiring typically between 3 and
8 hours per mammogram to compute the entire shape func-
tion faaa

�3� �t�. Shape functions were subsequently used in fits of
transmitted photon flux density Ttotal

�pert��t�, e.g.,

Ttotal
�2� �t� = T0�t� + ��a,T

�2� fa
�1��t� + �DT

�2�fD
�1��t� + ���a,T

�2� �2faa
�2��t�

+ ��a,T
�2� �DT

�2�	faD
�2��t� + fDa

�2��t�
 + ��DT
�2��2fDD

�2� �t� ,

convolved with the instrumental response function to derive
tumor optical properties �a,T

�pert�=�a,local+��a,T and �s,T
��pert�

��s,T
��pert�=1 / �3DT

�pert��� from the same measured data as ana-
lyzed previously, i.e., from temporal point spread functions
recorded at the tumor site with source and detector optical
fibers opposing each other �on-axis geometry�. Third-order
transmitted photon flux density Ttotal

�3� �t� was calculated up to
third order in absorption changes but only to second order in
scattering changes. This approach is justified since scattering
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coefficients of breast carcinomas are known to differ from
those of surrounding healthy tissue by some 10% only �29�.
Tumor optical properties derived from measured data by per-
turbation theory or the diffraction model might be in error
because of the crude tissue model used and because of miss-
ing or inaccurate prior knowledge on tumor size �RT�, tumor
shape, and tumor location �zT�. However, within the tissue
model adopted, diffraction theory is accurate to good ap-
proximation and hence our previous results ��a,T

DPDW, �s,T�DPDW�
on tumor optical properties were taken as reference.

The left-hand side of Fig. 6 compares absorption coeffi-
cients �a,T

�pert� and �a,T
�Padé� with the diffraction results �a,T

DPDW at
785 nm, the histograms on the right-hand side illustrate
�relative� frequencies at which absorption coefficients nor-
malized to the diffraction results occur that were obtained by
perturbation theory ��a,T

�pert� /�a,T
DPDW� or by Padé approximants

��a,T
�Padé� /�a,T

DPDW�. Among the 148 projection mammograms
analyzed by the diffraction model ��2�100�, only 141 mam-
mograms could be analyzed by first-order and third-order
perturbation theory at tolerable �2 values ��2�100� and,
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therefore, Fig. 6 includes the results on only 141 tumor-
bearing mammograms. On the other hand, second-order
analyses of these mammograms yielded values of �2�100 in
122 cases only. For the Padé approximants 137 out of the
141 mammograms could be analyzed at tolerable �2 values,
whereas in the four remaining cases �2 exceeded the value of
100.

In general, simulated transmitted photon flux densities ob-
tained from first- and third-order perturbation theory are bet-
ter suited to account for measured temporal point spread
functions within experimental uncertainties than those calcu-
lated from second-order theory. More precisely, diffraction
theory yielded fits with �2 values �2�10 in about 87% of the
141 cases, first- and third-order perturbation theory achieved
satisfactory fits ��2�10� in 84% of the mammograms stud-
ied, whereas this was true in only 50% of the cases analyzed
by second-order perturbation theory. In the remaining cases
the fairly large �2 values encountered indicate that the Born
series did not allow to fully reproduce measured temporal
point spread functions within experimental errors. This is
particularly true for second-order perturbation theory which
cannot account for the reduced transmittance caused by
strongly absorbing lesions of sufficient size as shown in Sec.
III A when discussing the minima of the second order results
illustrated in Figs. 2�a� and 2�b�. As can be seen from Figs.
6�a�–6�c� at rather low tumor absorption ��a,T

DPDW

�0.08 cm−1� results of perturbation theory �a,T
�pert� generally

agree with absorption coefficients �a,T
DPDW, and in these cases

third-order perturbation theory generally improves the agree-
ment with �a,T

DPDW over first-order results. At higher absorp-
tion ��a,T

DPDW�0.08 cm−1� first- and second-order coefficients
�a,T

�pert� saturate. Hence, first- and second-order perturbation
theory generally underestimate tumor absorption consider-
ably at higher absorption coefficients �a,T

DPDW. Saturation is
less pronounced for third-order absorption coefficients �Fig.
6�c�� and the onset of saturation appears to occur at some-
what higher absorption values ��a,T

DPDW�0.10 cm−1�. To
some extent, Figs. 6�a�–6�c� mimic the results of perturba-
tion theory illustrated in Figs. 3�a� and 3�c�.

The large data scatter of the first-and second-order pertur-
bation results observed for �a,T

DPDW�0.10 cm−1 and of the
third-order absorption coefficients encountered for �a,T

DPDW

�0.15 cm−1 indicates that perturbation theory is no longer
suited to robustly analyze measured temporal point spread
functions for tumor optical properties at higher absorption
values. In order to illustrate this point we calculated the ex-
pression CCauchy= ��a,T

DPDW−�a,local�RT
2 / �2D0� �cf. Eq. �17�� for

each case included in Fig. 6 to check whether the Cauchy
convergence criterion for the Born series of a pure absorber
was met �CCauchy�1, filled symbols, Figs. 6�a�, 6�c�, and
6�d� or not �CCauchy�1, open symbols, Figs. 6�a�, 6�c�, and
6�d��. It should be noted, however, that tumors generally dif-
fer both in absorption as well as scattering from the sur-
rounding tissue and, therefore, the convergence criterion
given in Eq. �17� might not be strictly applicable. As can be
seen from Figs. 6�a� and 6�c�, apart from a few exceptions
first- and third-order absorption coefficients that deviate con-
siderably from the diffraction results are associated with a
value of the Cauchy criterion larger than 1, indicating prob-

lems with the convergence of the Born series in these cases.
Likewise, for each of the 141 mammograms we investigated
whether second-order perturbation theory was applicable or
broke down entirely, i.e., whether ��a,T

DPDW=�a,T
DPDW−�a,local

is below or above ��a
min at which the minimum of 
T�2� /T0

occurs �breakdown limit L2, cf. Figs. 2�a� and 2�b��.
To this end the relative change in transmittance 
T�2� /T0

= �Ttotal
�2� �tmax,0�−T0�tmax,0�� /T0�tmax,0� was calculated at the tu-

mor site as a function of ��a=�a,T−�a,local and evaluated at
the time tmax,0 corresponding to the maximum of the back-
ground transmittance T0�t� using second-order perturbation
theory, again assuming tumors to be pure absorbers. Open
symbols in Fig. 6�b� correspond to mammograms for which
��a,T

DPDW���a
min, closed symbols to mammograms with

��a,T
DPDW���a

min. It follows from Fig. 6�b� that most of the
second-order results that deviate significantly from the dif-
fraction results are associated with cases for which second-
order perturbation theory is no longer applicable because of
strong tumor absorption and/or large tumor size. Some of the
exceptions appearing in Fig. 6�b� �filled symbols deviating
considerably from straight line� might be explained by the
different assumptions underlying the analysis for tumor op-
tical properties and the criterion for the breakdown of
second-order perturbation theory derived in Sec. III A. As
was noted above, tumors generally differ both in absorption
and scattering from the surrounding tissue and tumor optical
properties are derived from the entire temporal profile of the
transmitted laser pulse, whereas the criterion for breakdown
of second-order perturbation theory applies to pure absorbers
and is based on the change in the amplitude of the transmit-
ted pulse.

As can be seen from Fig. 6�d�, absorption coefficients
�a,T

�Padé� agree with the diffraction results at lower tumor ab-
sorption only and generally underestimate tumor absorption
at higher absorption levels. On average, Padé absorption co-
efficients marked by open symbols are lower than the dif-
fraction results by 17%. Most of the data shown in Fig. 6�d�
that fall below �a,T

DPDW correspond to tumors with radii RT
�1.2 cm. This situation should be compared with the one
encountered in Fig. 4�b� where the method of Padé approxi-
mants is seen to underestimate absorption coefficients of the
medium-sized �Rimp=1 cm� heterogeneity at higher absorp-
tion values.

The histograms of �a,T
�pert� /�a,T

DPDW and �a,T
�Padé� /�a,T

DPDW

shown on the right-hand side of Fig. 6 quantify some of the
conclusions discussed above. All histograms are skewed to-
wards ratios smaller than 1 illustrating the saturation of the
perturbation results observed for increasing tumor absorp-
tion. Besides one or two large bins at the center, the frequen-
cies at which �a,T

�pert� /�a,T
DPDW and �a,T

�Padé� /�a,T
DPDW occur are

broadly distributed. The center bin corresponds to mammo-
grams for which the perturbation and Padé results agree with
the tumor absorption coefficients within ±5% obtained by
the diffraction model. The center bin is seen to rise for higher
orders of perturbation theory and comprises about 24% �first
order, Fig. 6�e��, 36% �second order, Fig. �6��, 45% �third
order, Fig. 6�g��, and 38% �Padé, Fig. 6�h�� of all �141�
cases. Many of the mammograms with tumor absorption co-
efficients �a,T

DPDW�0.08 cm−1 contribute to the center bin as
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can be seen from the left-hand side of Fig. 6. The rise of the
center bin illustrates the improvement in the accuracy of the
tumor absorption coefficients that is achieved when higher-
order perturbation theory is still applicable, consistent with
our discussion of Figs. 6�a�–6�c�. Table II lists the percent-
ages of optical mammograms that were analyzed for tumor
optical properties by perturbation theory and Padé approxi-
mants within the adopted tissue model and with the prior
knowledge included, yielding absorption coefficients within
±10% and ±25% of the diffraction results taken as reference.
Even accepting deviations of ±25% from the value �a,T

DPDW

that correspond to its estimated overall uncertainty �see be-
low�, first-order perturbation theory fails to accurately ac-
count for tumor absorption in about 35% of all cases and this
fraction decreases only moderately for second-order �34%�
and third-order �23%� perturbation theory. Although first-
order Born approximation or Rytov approximation are
widely used as forward models to reconstruct tissue �tumor�
optical properties from time-domain or frequency-domain
data, our results on the accuracy of tumor absorption coeffi-
cients derived by first-order perturbation theory question the
validity of these forward models to analyze optical mammo-
grams for lesion optical properties. The histogram obtained
for Padé approximants is very similar to that for third-order
absorption coefficients, i.e., within the range of validity of
third-order perturbation theory the Padé approximants may
be used to determine tumor optical properties with much
lower computational efforts, however, leading to erroneous
results when lesion absorption and scattering is below that of
the surrounding tissue.

Although the diffraction model itself is accurate to good
approximation the underlying tissue model inadequately ac-
counts for the complexity of a tumor-bearing compressed
breast, as was mentioned above. Furthermore, inaccurate
prior knowledge included in the analysis, e.g., on tumor size,
will translate into uncertainties of the optical properties
�a,T

DPDW, ��s,T
DPDW derived, affecting the comparison with the

perturbation results to some extent. The effect of uncertain-
ties in tumor radii and tumor position along the compression
direction on tumor optical properties �a,T

DPDW, ��s,T
DPDW was

studied in Ref. �29�. In general, tumor radii obtained from
histopathology after surgery or from x-ray, magnetic reso-
nance �MR�, and ultrasound �US� mammograms were found
to correlate with tumor radii estimated from optical mammo-
grams �10�. However, because of the different contrast
mechanisms underlying x-ray, MR, US, and optical mammo-

grams, tumor radii derived by the various imaging tech-
niques may differ in selected cases. To estimate the effect of
uncertainties in tumor radii on the comparison of tumor op-
tical properties derived by the diffraction and perturbation
models, we have changed tumor radii by up to 20% and
generated figures such as Fig. 6�a�; although the comparison
between first-order and diffraction tumor absorption coeffi-
cients is affected quantitatively by changes in the tumor radii
assumed, the same qualitative results were obtained as the
ones illustrated in Fig. 6�a�. Reducing tumor radius results in
larger tumor absorption coefficients �a,T

DPDW and hence satu-
ration of first-order results is more pronounced as in Fig.
6�a�. The opposite holds true when inreasing tumor size and
the same general behavior is to be expected for higher-order
perturbation results. Therefore, our main conclusions are un-
affected by uncertainties of the prior knowledge included to
a large extent since the same prior knowledge was used for
the various methods of analysis. Previously the overall un-
certainty of diffraction tumor optical properties due to uncer-
tainties in tumor volume, tumor shape, and tumor location zT
was estimated to be about 25% on average �29�. It follows
that the right-hand column of Table II corresponds to the
fraction of optical mammograms the perturbation results of
which differ from the diffraction results by �relative�
amounts corresponding to the uncertainties of tumor optical
properties derived by the diffraction model taken as refer-
ence.

Figure 6 compares absolute values of tumor absorption
coefficients obtained by perturbation theory and by the
diffraction model. When normalizing tumor absorption
coefficients to local background values
��a,T

�pert� /�a,local ,�a,T
DPDW /�a,local� we observe first, second, and

third order results to start to saturate at about �a,T
�pert� /�a,local

=1.5, 2, and 2.5, respectively. Furthermore, in this section
we discussed only mammograms taken at 785 nm, however,
the same conclusions were drawn when analyzing in vivo
data at 670 nm.

VI. SUMMARY AND CONCLUSION

We evaluated second- and third-order time-domain pertur-
bation theory on virtual and real breastlike phantoms as well
as on in vivo data and quantitatively explored to what extent
higher- �second, third� order perturbation theory is suited to
derive optical properties of breast tumors.

By reconstructing the absorption coefficient �a of spheri-
cal heterogeneities of various sizes from simulated or mea-
sured time-domain phantom data using first-, second-, and
third-order perturbation theory as forward models, first order
was shown �see Sec. III B, Fig. 3�a�� to be valid up to ��a
�0.03 cm−1 �Rimp=1 cm�, but deviating at even smaller ab-
sorption changes for larger radii. Beyond this value ���a

�0.03 cm−1� first-order perturbation theory considerably un-
derestimates absorption changes. On the other hand, second-
and third-order perturbation theory starts to break down, i.e.,
saturates, at ��a�0.07 cm−1 �second order� and ��a
�0.08 cm−1 �third order� for Rimp=1 cm, again at even
lower ratios for larger radii. On average, at 785 nm the
change of the absorption coefficient amounts to about ��a

TABLE II. Fractions of optical mammograms �141� analyzed by
various forward models for tumor optical properties agreeing with
reference values within 10% or 25%.

Forward model
Perturbation theory

Percentage of optical mammograms

Deviation ±10% Deviation ±25%

First order 35% 65%

Second order 50% 66%

Third order 57% 77%

Padé approx. 55% 80%
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�0.06 cm−1 for breast tumors �29�. From this value together
with the broad biological variability of tumor sizes and op-
tical properties our phantom results suggest even third-order
perturbation theory to underestimate tumor absorption coef-
ficients for a considerable fraction of cases.

To further quantify to what extent perturbation theory al-
lows one to accurately determine optical properties of tumors
that are generally detected by �scanning� optical mammogra-
phy we reanalyzed 141 optical mammograms of 87 patients
carrying a tumor that had been validated by histology �29�.
Using tumor optical properties obtained from the diffraction
model of DPDW as reference and allowing absorption coef-
ficients obtained from perturbation theory or Padé approxi-
mants to deviate from the reference by as much as ±25%,
first-, second-, and third-order perturbation theory was found
to yield accurate tumor absorption coefficients in about 65%,
66%, and 77% of all cases, respectively, with the fraction of
80% observed for the Padé approximants being close to that
of third-order theory. In the remaining cases perturbation
theory considerably underestimates tumor absorption. The
considered deviation of ±25% corresponds to the estimated
overall uncertainty of the reference value. Saturation of the
�normalized� tumor absorption coefficient �a,T

�pert� /�a,local de-
rived from perturbation theory was observed to set in at ra-
tios �a,T

DPDW /�a,local of about 1.5 �first order�, 2 �second or-
der�, and 2.5 �third order�. Notably, absorption coefficients of
tumors were reported to be larger than the background ab-
sorption by a factor of about 2 on average, however, exhib-
iting large data scatter �29,39�. Among the 65% of cases with
rather accurate first-order results the third order theory im-
proves the accuracy of tumor absorption and reduced scatter-
ing coefficients with respect to the reference data.

In general, there are various theoretical approaches avail-
able based on time-domain diffusion theory to simulate light
propagation through �thick� biological tissue and to estimate
optical properties of tumors. Numerical integration of the
time-dependent diffusion equation by FEM methods which
was used as reference method in Sec. III allows to accurately
calculate the time-dependent photon flux density transmitted
through a �finite� slab for arbitrary distributions of the ab-
sorption and reduced scattering coefficients. However, FEM
calculations are presently too time consuming to fit this for-
ward model to measured TPS functions to deduce absorption
and reduced scattering coefficients of heterogeneities, e.g., of
tumors. On the other hand, moments of transmitted photon
flux densities calculated by FEM and of measured TPS func-
tions could be compared to deduce optical properties rather
than the entire pulse profile. Analytical solutions of the dif-
fusion equation lend themselves as forward model to be used
in fit procedures. Solutions of the diffusion equation repre-
senting the diffraction of DPDW are restricted to a single
spherical heterogeneity. In contrast, perturbation theory can
account for several embedded inhomogeneities of arbitrary
shapes, yet within a limited range of absorption changes and
sizes. The empirical nonlinear Padé approach allows to de-
duce optical properties of strongly absorbing lesions beyond
the validity of second-order perturbation theory, yet fails to
correctly account for lesions with lower absorption or lower
scattering, such as cysts. While first-order perturbation
theory is generally not suited to quantitatively deduce tumor

optical properties from optical mammograms, and second-
order perturbation theory does not allow to correctly fit the
transmitted pulse shape in many cases, perturbation theory
carried up to second order in scattering and to third order in
absorption yields acceptable results in as much as 77% of all
cases investigated. Although data scatter was observed to be
larger when using Padé approximants as forward model com-
pared to third-order perturbation theory its significantly
lower computational load makes the Padé approximants to
be the preferred choice when analyzing optical properties of
nonspherical lesions as long as cases with lower absorption
and large scattering changes can be avoided. However, when
the true shape of the tumor in the slightly compressed breast
is not precisely known and a spherical tumor shape is as-
sumed for simplicity the diffraction of photon density waves
is the forward model of choice, being accurate and compu-
tationally not demanding.
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APPENDIX A

Below we list analytical expressions for the first- and
second-order contributions I�r�det , t� to the transmitted photon
density. In Table I the distances, vectors, and their dot prod-
ucts are defined which are consistent with the notation of
Ref. �24�. In addition, the following abbreviations are used:

g1�a,b� = 1 +
�a − b�2

ab
, g2�a,b� =

�a + b�
a2b2 ,

g3�a,b� = 2b2 + �a − b�2,

F1�a,b,t� =
1

a
+

�a + b�2

b�2D0vt�
,

F2�a,b,t� =
�a − b�2

ab
+ 1 +

�a + b�2

2D0vt
,

F3�a,b,t� =
3

a2 +
3�a + b�
a�2D0vt�

+
�a + b�3

b�2D0vt�2 ,

F4�a,b,t� = � 3

a2 +
�a + b�2g3�a,b�

ab3�2D0vt�
+

�a + b�4

b2�2D0vt�2� ,

F5�a,b,t� = �15

a3 +
15�a + b�
a2�2D0vt�

−
�a + b�3�3ab − 6b2 − a2�

ab3�2D0vt�2

+
�a + b�5

b2�2D0vt�3� .

(a) First-order contributions. The first order absorption
and scattering corrections to the transmitted photon flux den-
sity were reported previously �14–16,18�. For absorption, the
corresponding photon densities are given by
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In,kabs

�	�1�
�r�det,t� =

− ��a exp�− �a0vt�
4�D0�4�D0vt�3/2 �

V

rn
� + rpk

	

rn
�rpk

	

�exp�−
�rn

� + rpk
	 �2

4D0vt
�dVp �A1�

and for scattering by

In,kscat

�	�1�
�r�det,t� =

�D exp�− �a0vt�
2D0�4�D0vt�5/2

� �
V

	�r�n
*� · r�pk

	 �g2�rn
�,rpk

	 �F2�rn
�,rpk

	 ,t�


�exp�−
�rn

� + rpk
	 �2

4D0vt
�dVp. �A2�

(b) Second-order expressions. Second-order absorption
and scattering corrections to the transmitted photon flux den-
sity were reported previously �24�. The corresponding pho-
ton density for second-order absorption correction is derived
from

Im,n,kabs-abs

�	
�2�
�r�det,t� =

���a�2 exp�− �a0vt�
�4�D0�2�4�D0vt�3/2�

V
�

V

rpqm

rm
�rpn

	 rqk



�exp�−
rpqm

2

4D0vt
�dVpdVq, �A3�

and the absorption-scattering cross term from

Im,n,kabs-scat

�	
�2�
�r�det,t� =

− ��a�D exp�− �a0vt�
�4�D0�2�4�D0vt�3/2

� �
V
�

V

�r�pn
*	 · r�qk


 �
�rpn

	 �2�rqk

 �2H1�t�

�exp�−
rpqm

2

4D0vt
�dVpdVq, �A4�

where

H1�t� =
1

rpq
+ g1�rpn

	 ,rqk

 �F1�rpq

+ ,rm
� ,t� + F3�rpq

+ ,rm
� ,t� .

The scattering-absorption cross term is given by

Im,n,kscat-abs

�	
�2�
�r�det,t� =

− ��a�D exp�− �a0vt�
�4�D0�2�4�D0vt�3/2

� �
V
�

V

�r�m
*� · r�pn

	 �
�rpn

	 �3rqk

 H2�t�

�exp�−
rpqm

2

4D0vt
�dVpdVq, �A5�

where

H2�t� =
rqk




�rm
��2F1�rm

� ,rpq
+ ,t� +

rpn
	 �rpq

+ �2

2D0vt
g2�rm

� ,rpq
+ �F2�rm

� ,rpq
+ ,t� ,

and second-order scattering contributions are calculated us-
ing

Im,n,kscat-scat

�	
�2�
�r�det,t� =

− ��D�2 exp�− �a0vt�
8��D0�2�4�D0vt�5/2

� �
V
�

V
� rJqm

**H3�t�
�rpn

	 �2�rqk

 �2 −

rJpm
*rJpq

*H4�t�
�rpn

	 �3 �
�exp�−

rpqm
2

4D0vt
�dVpdVq, �A6�

where

H3�t� =
rpqm

�rm
��2rpq

+ g1�rpn
	 ,rqk


 �F2�rm
� ,rpq

+ ,t� + F4�rpq
+ ,rm

� ,t� ,

H4�t� =
3g2�rm

� ,rpq
+ �

�rpn
	 �2 F2�rm

� ,rpq
+ ,t� +

g3�rpn
	 ,rqk


 �
rpq

+ rpn
	 �rqk


 �3F4�rpq
+ ,rm

� ,t�

+
1

�rqk

 �2F5�rpq

+ ,rm
� ,t� .

(c) Integrability of second-order contributions at r�p=r�q.
The double volume integrals appearing in Eqs. �A3�–�A6�
are taken over all locations r�p ,r�q within the heterogeneity of
volume V. As can be seen from Eq. �A6� the two terms of the
integrand within the brackets contain contributions propor-
tional to �rpn

	 �−3. For n=	=0, rpn
	 = �r�p−r�q� and, therefore,

rpn
	 =0 when the two position vectors r�p ,r�q coincide. Here we

briefly show that the innermost volume integral over the lo-
cation r�q is integrable even in that case and does not lead a
logarithmic singularity as reported recently �24�. To this end
we select a small sphere of radius � �volume V��, centered at
r�p and express the innermost integral of Eq. �A6� as

Int = �
V−V�

� rJqm
**H3�t�

�rpn
	 �2�rqk


 �2 −
rJpm

*rJpq
*H4�t�

�rpn
	 �3 �exp�−

rpqm
2

4D0vt
�dVq

+ g2�rm
� , r̃pk


 �F2�rm
� , r̃pk


 ,t�exp�−
�rm

� + r̃pk

 �2

4D0vt
�

� �
0

� d�

�
r�m

*���
0

� �
0

2� �1̂ −
3����

�2 � · sin �d�d�� · r̃�pk



+ �
V�

O��rpn
	 ���dVq, �A7�

where r̃�pk

 =r�p−R� 0k


 , �� =r�q−r�p, 1̂ is the unit tensor and
O��rpn

	 ��� contains expressions �r�p−r�q�� with ��−2, making

the last integral integrable. The second rank tensor 1̂− 3����
�2 is

traceless and symmetric, the average of which vanishes when
taken over the unit sphere. Therefore, the second summand
of Eq. �A7� is identically zero and the innermost integral of
Eq. �A6� is integrable. Likewise, as can be seen from Eq.
�A3�, the integrand of the pure absorption term is propor-
tional to �r�p−r�q�−1, whereas the integrand of the absorption-
scattering �see Eq. �A4�� and scattering-absorption �Eq.
�A5�� contributions contains �r�p−r�q�−2 in lowest order, mak-
ing all double volume integrals integrable.

(d) Approximate scaling properties of transmitted photon
densities and shape functions. It follows from Eqs. �A1� and
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�A2� that the expressions D0 exp�+�a0vt�Iabs
�1� �r�det , t� /��a and

D0 exp�+�a0vt�Iscat
�1� �r�det , t� /�D do not explicitly depend on

the background optical properties �a0 ,D0, apart
from the small displacement of the photon source into
the medium at r�0= �0,0 ,1 /�s0� � and the small shift of the
boundaries to z=−ze, z=d+ze, but on the scaled time variable
�=2D0vt only. Likewise, the same holds true for
the expressions D0

2exp�+�a0vt�Iabs-abs
�2� �r�det , t� / ���a�2,

D0
2 exp�+�a0vt�Iabs-scat

�2� �r�det , t���a�D, D0
2 exp�+�a0vt�

�Iscat-abs
�2� �r�det , t� /��a�D, and D0

2 exp�+�a0vt�Iscat-scat
�2�

��r�det , t� / ��D�2, as can be seen from Eqs. �A3�–�A6�. There-
fore, when changing background optical properties but keep-
ing the overall geometry unchanged these expressions or the
modified shape functions g�1����, g�2���� defined as

g�1���� = exp�+ �a0vt�f �1��t� , �A8�

g�2���� = D0 exp�+ �a0vt�f �2��t� �A9�

�cf. Eqs. �6�–�11�� can be obtained to good approximation
simply by rescaling, allowing to readily calculate the contri-
butions I�1��r�det , t�, I�2��r�det , t�, as well as the shape functions
f �1��r�det , t�, f �2��r�det , t�.

APPENDIX B

In this appendix we derive the Cauchy criterion for the
convergence of the Born series of a pure absorbing hetero-
geneity of arbitrary shape, starting from Eq. �16�. To this end
we assume that one can enclose the volume V of the hetero-
geneity within a sphere S, which lies entirely inside the slab.
The radius of this sphere is denoted by Rimp and its center is
located at r�imp. In addition we consider only the dominant
term in Eq. �16� for which mp=0 and �p=0 �positive source�,
because the sum over mirror images is known to converge
rapidly �33�. The sum in the numerator in Eq. �16� represents
the length of the interaction path; an upper limit is given by
L�N�=2NRimp+ �r�det−r�imp�+ �r�0−r�imp�. The exponential func-
tions appearing in Eq. �16� are always smaller than unity, so
that one obtains

�Im0,….,mN

�0,. . .,�N �N�� �
e−�avt

�4�D0vt�3/2� ���a�
4�D0

�N L�N�

�r�imp − r�det� − Rimp

� �
S
�dV1

r0,0
+ �

S
� dV2

r1,0
+ . . . �

S
�dVN−1

rN−2,0
+

��
S
� dVN

rN−1,0
+ �� . . . �� . �B1�

Here we used the fact that the sphere lies inside the slab
allowing us to estimate the lower limit for rN,0

+ as �r�imp
−r�det�−Rimp�0. To estimate the integrals over the singulari-
ties, we consider the innermost integral first,

I = �
S

dVN

�r�N − r�N−1�
. �B2�

We compare this integral with that over a sphere S̃ with the
same radius Rimp but centered at r�N−1 rather than at r�imp,

Ĩ = �
S̃

dVN

�r�N − r�N−1�
. �B3�

The overlap region of S and S̃ contributes equally to both
integrals. The two remaining regions have the same volume
and shape. However, the integrand in Eq. �B2� is smaller
than 1 /Rimp, whereas the opposite holds true for the inte-

grand in Eq. �B3� and, therefore, I� Ĩ. By elementary inte-

gration one finds Ĩ=2�Rimp
2 . This upper limit no longer de-

pends on r�N−1, and the same procedure can be repeated to
find upper limits for all integrals in Eq. �B1�, yielding

�Im0,….,mN

�0,. . .,�N �N�� �
e−�avt

�4�D0vt�3/2� ���a�
4�D0

�N

�
2NRimp + �r�det − r�imp� + �r�0 − r�imp�

�r�imp − r�det� − Rimp

�2�Rimp
2 �N.

�B4�

Since terms of power N prevail over linear terms, we obtain
as Cauchy criterion for the convergence of the Born series of
a pure absorbing heterogeneity the expression given in Eq.
�17�.
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