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BACKGROUND: Colorectal cancers are often chemoresistant toward antitumour drugs that are substrates for ABCB1-mediated
multidrug resistance (MDR). Activation of the Wnt/b-catenin pathway is frequently observed in colorectal cancers. This study
investigates the impact of activated, gain-of-function b-catenin on the chemoresistant phenotype.
METHODS: The effect of mutant (mut) b-catenin on ABCB1 expression and promoter activity was examined using HCT116 human
colon cancer cells and isogenic sublines harbouring gain-of-function or wild-type b-catenin, and patients’ tumours. Chemosensitivity
towards 24 anticancer drugs was determined by high throughput screening.
RESULTS: Cell lines with mut b-catenin showed high ABCB1 promoter activity and expression. Transfection and siRNA studies
demonstrated a dominant role for the mutant allele in activating ABCB1 expression. Patients’ primary colon cancer tumours shown
to express the same mut b-catenin allele also expressed high ABCB1 levels. However, cell line chemosensitivities towards 24 MDR-
related and non-related antitumour drugs did not differ despite different b-catenin genotypes.
CONCLUSION: Although ABCB1 is dominantly regulated by mut b-catenin, this did not lead to drug resistance in the isogenic cell line
model studied. In patient samples, the same b-catenin mutation was detected. The functional significance of the mutation for
predicting patients’ therapy response or for individualisation of chemotherapy regimens remains to be established.
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Over 90% of colorectal cancers bear mutations in the Wnt/
b-catenin signalling pathway, notably APC and b-catenin, that
result in the activation of this pathway (Fearon and Vogelstein,
1990; Bienz and Clevers, 2000; Polakis, 2000; Vogelstein and
Kinzler, 2004; Klaus and Birchmeier, 2008; Najdi et al, 2011).
Activating mutations of b-catenin affect either the assembly of
the phosphorylation complex or the phosphorylation sites on
b-catenin. The most frequently observed mutations in b-catenin
involve the deletion or the exchange of serine and threonine
residues at the positions 45, 41, 37 and 33; interfering with its
efficient ubiquitination and degradation in the proteasome (Orford
et al, 1997).

Such mutations are found in a wide variety of human cancers,
including the colon, pancreatic, gastric, ovarian and prostate
cancer as well as melanoma (Polakis, 2000). They are associated
with aggressive tumour growth and poor prognosis, and accumu-
lation of b-catenin in the nucleus has been correlated with late
stages of tumour progression and the development of metastases
(Ilyas et al, 1997; Morin et al, 1997; Polakis, 1999; Kim et al, 2003;
Provost et al, 2003; Wong et al, 2004; Stein et al, 2006).

The phenomenon of multidrug resistance (MDR) was identified
as one of the most frequent causes for therapy resistance in cancer
and represents a major cause of failure of cancer chemotherapy
(Gottesman et al, 2002; Stein and Walther, 2006; Szakacs et al,
2006; Tiwari et al, 2011). The development of MDR is mainly
dependent on the expression of MDR-associated genes encoding
ABC transporter proteins (Gillet and Gottesman, 2011). The MDR
gene ABCB1 (MDR1) encoding the gene product P-glycoprotein
was the first human ABC transporter cloned. The generation of the
MDR phenotype was shown directly by ABCB1 cDNA transfection
(Riordan and Ling, 1979; Ueda et al, 1987). ABCB1 acts as a drug
efflux pump lowering the intracellular concentration of cytotoxic
drugs. It transports a wide spectrum of hydrophobic, neutral or
positively charged substrates such as taxanes and anthracyclines
(Tusnady et al, 2006; Tiwari et al, 2011).

High ABCB1 levels have been detected in normal tissues with
excretory or secretory function, which include colorectal epithe-
lium, and in tumours originating from these organs (Thiebaut
et al, 1987; Cordon-Cardo et al, 1990). Overexpression of ABCB1
correlates with a negative prognosis in several types of cancer.
ABCB1 expression is inherently overexpressed in tumours
of the colon, making them primarily chemotherapy-resistant
towards a wide panel of anticancer drugs. Consequently, there is
only a limited selection of chemotherapeutics for treatment of
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gastrointestinal cancer (Weinstein et al, 1991; Litman et al, 2001;
Ho et al, 2003; Tiwari et al, 2011).

Reports of T-cell factor 4 (TCF4)-binding sites in the ABCB1
gene promoter (Yamada et al, 2000, 2003) suggest that b-catenin/
TCF4 signalling could provide an underlying mechanism con-
tributing to the chemoresistance phenotype. In this report, we have
utilised isogenic colon cancer cell lines to investigate the effects of
a common oncogenic b-catenin mutation on chemoresistance
under conditions where the tumour genotype could be controlled
experimentally and sought to confirm the findings using patient
tumour samples. We used high throughput screening with MDR-
related and non-related antitumour compounds in order to evaluate
the impact of mutant (mut) b-catenin on in vitro drug sensitivity.

MATERIALS AND METHODS

Tumour cell lines, transfections and sulindac treatment

The human colon carcinoma cell line HCT116 showed a moderate
ranking in terms of MDR amongst the 60 cell line panel of the
National Cancer Institute (Wu et al, 1992; Izquierdo et al, 1996),
making these cells and isogenic derivatives suitable models for
investigating modulation of chemosensitivity. HCT116 cells
(heterozygous for b-catenin D45, exon 3; resulting in the loss of
the serine phosphorylation site, S45), the b-catenin knockout cell
lines HAB-18mut and HAB-68mut (express only the mut b-catenin
allele), and HAB-85wt and HAB-92wt (express only one wild-type
(wt) b-catenin allele) were kindly obtained from Todd Waldman,
Lombardi Comprehensive Cancer Center, Georgetown University
School of Medicine, Washington, DC (Kim et al, 2002). b-Catenin
genotypes were previously confirmed by sequencing exon 3 and
by reverse transcription (RT)– PCR-based restriction fragment
length polymorphism (Stein et al, 2006). Transfections of wt and
D45-mut b-catenin cDNA, kindly provided by Bert Vogelstein,
Johns Hopkins University, Baltimore MD, USA, were performed
using lipofectin. b-Catenin siRNA (b-catenin_1 sense 50-GGUGG
UGGUUAAUAAGGCU-30, b-catenin_1 antisense 50-GCCUUAUUA
ACCACCACC-30, b-catenin_2 sense 50-CCUAUACUUACGAAAAA
CU-30, b-catenin_2 antisense 50-AGUUUUUCGUAAGUAUAGG-30)
or scrambled control siRNA (all from Ambion, Austin, TX, USA)
were transfected using oligofectamine. For each transfection
experiment, at least three independent transfected clones of
each cell line were analysed; representative clones are shown.
Sulindac treatment was performed with 100 mM sulindac sulphide
(Sigma, Munich, Germany; Boon et al, 2004) dissolved in dimethyl
sulfoxide and diluted in growth medium for 24 h.

Patients and tumour tissues

Tissue specimens from 33 colon cancer patients (20 male, 13 female;
age range 54–93) were obtained with written consent of the patients
(approved by the local ethics committee of the Charité, Berlin).
These patients with adenocarcinomas of UICC stages I– III were
previously untreated, did not have a history of familial colon
cancer, did not suffer from a second tumour of the same or a
different entity, underwent surgical R0 resection, and had not
developed distant metastases at time of surgery. Tumour speci-
mens were snap-frozen in liquid nitrogen and blinded for analysis.
Three of these patients were identified to harbour the heterozygous
in-frame deletion mutation of D45 in exon 3 of the b-catenin gene
(Stein et al, 2006). In order to analyse a potential correlation of
mut b-catenin with its nuclear localisation and ABCB1 expression
levels, serial cryosections were made for immunohistochemistry.

ABCB1 gene promoter analysis

The influence of b-catenin/TCF4-mediated gene expression was
analysed in pTOP-CAT- and pFOP-CAT- (kindly provided by

Walter Birchmeier, Max-Delbrück-Center for Molecular Medicine,
Berlin, Germany) transfected cells. pTOP-CAT utilises the multi-
merised TCF4 consensus DNA-binding sequence to drive the CAT-
reporter expression (van de Wetering et al, 2002). pFOP-CAT
contains a mutated TCF4 sequence and serves to establish the level
of background, non-specific signal. The ABCB1 promoter CAT-
construct pMDR-CAT1 (�1974 to þ 121) was kindly provided by
Kimitoshi Kohno, University of Occupational and Environmental
Health, Kitakyushu, Japan (Kohno et al, 1990). For CAT-ELISA,
the promoter-less plasmid pCAT-Basic (Promega, Mannheim,
Germany) and transfections without DNA served as controls.
Transfer efficiency was controlled by transfection of the GFP-
expressing pEGFP-N1 plasmid (Clontech, Heidelberg, Germany)
and subsequent flow cytometry. Transfections and CAT-ELISA
were carried out as described previously (Stein et al, 2006). The
amount of CAT protein was normalised to the protein content of
the respective lysate, expressed as pg CAT per mg protein, and
calculated as percentage of CAT reporter gene expression in
HCT116 cells. Values are given as average of triplicates.

Quantitative real-time RT–PCR

RT reaction was performed with 100 ng of total RNA (MuLV
Reverse Transcriptase, Applied Biosystems, Weiterstadt, Germany).
Quantitative real-time PCR (95 1C 60 s, 45 cycles of 95 1C 10 s,
62 1C 10 s, 72 1C 20 s) was performed using the LightCycler (DNA
Master Hybridization Probes Kit, Roche Diagnostics, Mannheim,
Germany) as previously described (Stein et al, 2002). Expression
of ABCB1, ABCC1, ABCG2, MVP and of the housekeeping gene
glucose-6-phosphate dehydrogenase (G6PDH; h-G6PDH Housekeeping
Gene Set, Roche) was determined in parallel from the same RT
reaction by using gene-specific hybridisation probes, each done
in duplicate per sample. For ABCB1: forward primer 50-TTGAA
ATGAAAATGTTGTCTGG-30, reverse primer 50-CAAAGAAACAA
CGGTTCGG-30, FITC probe 50-CACTGAAAGATAAGAAAGAACT
AGAAGGTGCT-30, LCRed640 probe 50-GGAAGATCGCTACTGAA
GCAATAGAAAACT-30; for ABCC1: forward primer 50-TGCCGAA
GGAGAGATCATCATC-30, reverse primer 50-CGGAGGGAACCCG
AAAACA-30; FITC probe 50-GCCTGCACGACCTCCGCTTCAAGA-30,
LCRed640 probe 50-CACCATCATCCCCCAGGACCCTGTT-30; for
ABCG2: forward primer 50-AGCAGGGACGAACAATCATC-30, reverse
primer 50-AGGCCCGTGGAACATAAGTC-30; FITC probe 50-TCATC
AGCCTCGATATTCCATCTTCAAGTT-30, LCRed640 probe 50-TTT
GATAGCCTCACCTTATTGGCCTCAG-30; for MVP: forward primer
50-CGCATCCCCCCATACCACTA-30, reverse primer 50-GGCAAAC
AGTACCCTCTCATTGTCC-30; FITC probe 50-CAGAACAGCAACG
TGTCCCGTGTGGA-30, LCRed640 probe 50-GTCGGGCCAAAGAC
CTACATCCGGC-30 (syntheses of primers and probes: BioTeZ and
TIB MolBiol, both Berlin, Germany). The calibrator cDNA was
employed in serial dilutions simultaneously in each run, derived
from the ABCB1-overexpressing cell line KBV-1 and the ABCC1-
overexpressing cell line MCF-7/VP16 (kindly provided by Michael
M Gottesman and Erasmus Schneider, National Cancer Institute,
Bethesda, MD, USA), from the ABCG2-overexpressing cell line
SW1573/2R120 and from the MVP-overexpressing cell line GLC-4/
ADR (kindly provided by Henk J Broxterman, Free University
Amsterdam, The Netherlands).

Immunocytochemistry and immunohistochemistry

We used a monoclonal anti-ABCB1 antibody (Kamiya Biomedical,
Seattle, WA, USA; 1 : 20) and a monoclonal anti-b-catenin antibody
(BD Biosciences, Heidelberg, Germany, 1 : 800). For immuno-
cytochemistry, cells were cultured on eight-well chamber slides;
cells without primary antibody served as controls. For immuno-
histochemistry, consecutive cryosections were incubated on the
same slide; tissue sections without primary antibodies served
as controls. Cells or tissue sections were fixed, endogenous
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peroxidase was inactivated and cell membranes were permeabi-
lised. After blocking, cells or tissue sections were incubated with
the anti-ABCB1 or the anti-b-catenin antibody for 2 h. Detections
were performed with the StreptABComplex/HRP Duet system
(DAKO, Glostrup, Denmark). Nuclei were counterstained with
hemalum (hematoxylin/alum mixture; Carl Roth GmbH, Karlsruhe,
Germany). Microphotographs were taken with a Zeiss Axioplan 2
microscope and an Axiocam HRc camera (Zeiss, Göttingen,
Germany) using the Axiovision 4.2 software (Zeiss).

Immuno flow cytometry

We used a monoclonal anti-ABCB1 antibody (MRK16, antibodies-
online, Atlanta, GA, USA; 1 : 20), a monoclonal anti-ABCC1
antibody (MRPm6, Acris antibodies, Herford, Germany; 1 : 20), a
monoclonal anti-ABCG2 antibody (BXP-21, Abnova, Taipei,
Taiwan; 1 : 20), a monoclonal anti-MVP antibody (MVP 1014,
Gene Tex, Irvine, CA, USA; 1 : 20). Goat anti-mouse IgG1 and
IgG2a antibodies were from Life Technologies (Darmstadt,
Germany). Cells were prepared and were incubated as previously
described (Stein et al, 1996). Fluorescence intensity of 104 cells was
measured with a FACSCalibur (Becton Dickinson, Franklin Lakes,
NJ, USA) and expressed as mean fluorescence. After titration of the
antibody, at least two independent experiments, each performed in
duplicate, were carried out.

Western blotting

Total protein extractions of the cells were performed with RIPA
buffer (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% Nonidet P-40,
supplemented with complete protease inhibitor tablets; Roche
Diagnostics) for 30 min on ice. The nuclear, cytoplasmic and
membrane protein fractions were isolated with the Qproteome Cell
Compartment Kit (Qiagen, Hilden, Germany). Western blotting
was carried out as described previously (Stein et al, 2009).
Membranes were incubated overnight at 4 1C with a monoclonal
anti-ABCB1 antibody (C219, Novus Biologicals, Cambridge, UK;
1 : 50), a monoclonal anti-ABCC1 antibody (MRPm6, Acris
antibodies; 1 : 50), a monoclonal anti-ABCG2 antibody (BXP-21,
Abnova; 1 : 50) and a monoclonal anti-MVP antibody (MVP 1014,
Gene Tex; 1 : 50). Western blotting for b-tubulin (Becton
Dickinson; 1 : 1000) served as loading control.

Rhodamine assay

HCT116 cells and the b-catenin knockout cell lines HAB-68mut and
HAB-92wt were incubated for 10 or 15 min at 37 1C with rhodamine
123 (0.75 mg ml�1; Sigma, Taufkirchen, Germany), and were then
kept in rhodamine 123-free medium for another 60 min at 37 1C.
Fluorescence intensity of 1� 104 cells per group was measured in
duplicate per sample by using the FACSCalibur (Becton Dickinson,
Cell Quest program).

High throughput drug sensitivity phenotyping

A library of 24 prototype drugs (Table 1) including well known
MDR substrates, small molecules not associated with MDR and
drugs targeting kinases and other potentially relevant targets was
assembled, dissolved in dimethyl sulfoxide, further diluted in
isopropanol and distributed to wells of 384-well plates with a liquid
handling robot in a randomised fashion such that each dilution
was present in three replicate dilutions at random locations across
the plates. The plates were then dried down in a SpeedVac, sealed
and stored frozen at �20 1C. For use in assays, plates were thawed,
compounds were re-solubilised in dimethyl sulfoxide and further
diluted with growth medium (RPMI-1640 supplemented with 5%
foetal bovine serum and 2 mM glutamine). Aliquots of diluted
compounds were then transferred to 384-well plates containing

tumour cells and the plates were incubated for 4 days in a 37 1C,
humidified incubator with an atmosphere of 5% CO2. Viable cell
numbers were then evaluated using an Alamar Blue assay. Briefly,
cells were treated with Alamar Blue dissolved in serum-free RPMI-
1640 and incubated for 4 h. Plates were then read on a Wallac
Victor reader (PerkinElmer) at an excitation wavelength of 530 nm
and emission wavelength of 590 nm. Values for triplicate wells at
each concentration were then averaged and expressed as percent of
vehicle (dimethyl sulfoxide) control. Concentration-response curves
were generated and IC50 values extracted from the curves by linear
interpolation. Response of cell lines across the drug library was
compared in terms of concentration-response curves, derived IC50

values and patterns of sensitivity in relation to genotype.

Statistical analysis

Levels of statistical significance were evaluated by using the t-test or the
non-parametric two-sided Mann–Whitney rank sum test depending
on whether the data passed or failed a normal distribution test.

Table 1 Chemosensitivity towards drugs, including MDR-associated
compounds, as determined by high throughput screening in HCT116,
HAB-68mut and HAB-92wt cells

Drug Cell line, IC50 (M)

Name Class (target) HCT116 HAB-68mut HAB-92wt

Adriamycina Standard
cytotoxic agent

5,90E-08 7,90E-08 1,06E-07

Paclitaxela Standard
cytotoxic agent

3,45E-09 4,25E-09 7,10E-09

Vincristinea Standard
cytotoxic agent

1,20E-08 5,80E-09 7,10E-09

Etoposide (VP-16)a Standard
cytotoxic agent

3,60E-06 3,70E-06 4,70E-06

Mitoxanthronea Standard
cytotoxic agent

2,15E-08 5,80E-08 6,85E-08

Topotecana Standard
cytotoxic agent

1,05E-08 2,00E-08 4,85E-08

Melphalena Standard
cytotoxic agent

7,60E-06 7,10E-06 9,60E-06

5-Fluorouracila Standard
cytotoxic agent

4,40E-06 4,10E-06 4,50E-06

Gemcitabine Standard
cytotoxic agent

9,70E-10 8,30E-10 1,70E-09

5-Azacytidine Epigenetic modulator 1,60E-06 3,70E-07 1,10E-06
PXD101 Epigenetic modulator 4,60E-07 3,30E-07 4,20E-07
Cyclopamine Hedgehog pathway 8,60E-06 9,80E-06 1,10E-05
Bortezomid
(Velcade)

Proteasome 4,50E-09 4,10E-09 6,20E-09

17-DMAG Heat shock protein 7,20E-08 6,30E-08 1,50E-07
RHPS4 Telomerase 1,80E-05 1,80E-05 3,40E-05
Dasatinib Kinases 3,10E-08 1,80E-08 1,30E-08
Erlotinib Kinases 1,30E-04 1,30E-04 1,30E-04
Gefitinib (Iressa) Kinases 1,60E-05 1,60E-05 1,70E-05
Imatinib (Gleevec) Kinases 2,00E-05 2,00E-05 2,50E-05
Lapatinib Kinases 1,50E-05 1,50E-05 2,00E-05
PV 1019 Kinases 1,70E-05 1,60E-05 1,70E-05
Sunitinib Kinases 7,10E-06 5,90E-06 9,40E-06
Sorafenib Kinases 5,10E-06 4,20E-06 5,50E-06
SU11274
(Sigma S9820)

Kinases 5,80E-06 3,70E-06 8,20E-06

By high throughput screening, 24 chemotherapeutic drugs were applied in 18 different
concentrations to HCT116, HAB-68mut and HAB-92wt cells. Chemosensitivities
of HCT116, HAB-68mut and HAB-92wt cells, expressed as IC50 values and given
as averages of triplicates, did not differ significantly despite their differences in
b-catenin genotype and ABCB1 expression levels, when comparing HAB-92wt

with HCT116 cells, or HAB-92wt with HAB-68mut cells. aConcentration-dependent
growth of HCT116, HAB-68mut and HAB-92wt cells, treated with the marked drugs,
is illustrated in Figure 7.
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RESULTS

ABCB1 expression is dependent on b-catenin mutation
status

Initially, we investigated the dependence of ABCB1 expression
on the mutation status of b-catenin. We compared ABCB1 gene
expression levels in the parental human colon carcinoma cell line
HCT116, that is heterozygous for an in-frame D45 deletion in exon
3 of the b-catenin gene, in the HAB-18mut and HAB-68mut as well as
in the HAB-85wt and HAB-92wt knockout strains of HCT116 cells,
in which either the wt or the mut b-catenin allele was ablated by
homologous recombination (Kim et al, 2002). Derivatives that
contain only the mut b-catenin allele showed high levels of ABCB1
mRNA, comparable to the parental cells, as determined by
quantitative real-time RT– PCR. Derivatives that carry the wt
b-catenin allele exclusively, showed up to four-fold lower ABCB1
expression levels (Figure 1A).

Next, we reconstituted the heterozygous b-catenin genotype
of the knockout strains: HAB-68mut cells were stably transfected
with wt b-catenin cDNA and HAB-92wt cells with D45-mutated
b-catenin cDNA (empty vector transfections served as controls;
Figure 1B). The reintroduction of the mut b-catenin allele into

HAB-92wt cells led to an up to four-fold increase in ABCB1
expression thereby restoring the expression level of the parental
heterozygous HCT116 cell line. ABCB1 levels remained almost
unchanged in HAB-68mut cells following transfection of wt
b-catenin. We also analysed b-catenin-controlled expression
regulation of ABCB1 by treating HCT116 cells with siRNA acting
on b-catenin (Figure 1C). A clear, up to 10-fold reduction in
ABCB1 expression was measured 48 h and 72 h post siRNA
treatment. Transfection of control siRNA had no effect. Further-
more, we treated HCT116, HAB-68mut and HAB-92wt cells with a
pharmacologic inhibitor. Sulindac is known to reduce b-catenin
expression and its nuclear translocation, as well as to induce its
proteasomal degradation, thereby modulating b-catenin target
gene expression (Rice et al, 2003; Boon et al, 2004; Gardner et al,
2004; Han et al, 2008; Figure 1D). Here we probed the effect of
sulindac on the b-catenin target gene ABCB1. ABCB1 expression
levels in solvent-treated cells were dependent on b-catenin
genotype, with reduced ABCB1 expression in HAB-92wt cells
harbouring only the wt allele of b-catenin. Sulindac treatment
reduced ABCB1 mRNA expression in HCT116, HAB-68mut and
HAB-92wt cells by seven-fold, five-fold and five-fold, respectively.

On the protein level, we found two-fold higher ABCB1 expres-
sion in cells harbouring mut b-catenin, HCT116 and HAB-68mut,
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compared with HAB-92wt cells by immuno flow cytometry (Figure
2A and B). Immunocytochemistry confirmed these data: strong
ABCB1 protein signals were observed in HCT116 and HAB-68mut

cells and much lower signals were observed in HAB-92wt cells that
express wt b-catenin exclusively (Figure 2C). Next, we analysed
ABCB1 protein expression by western blotting, using isolated
nuclear, cytoplasmic and membrane fractions of the cells
(Figure 2D). Interestingly, we found ABCB1 in the membrane
fractions of HCT116 and HAB-68mut cells, whereas membranous
ABCB1 was not detected in HAB-92wt cells.

ABCB1 promoter activity depends on b-catenin mutation
status

Functional assays with the TCF4 reporter TOP-CAT confirmed that
cells with the oncogenic allele of b-catenin had elevated levels of
TCF4-mediated transactivation (Figure 3A). Substantially, up to
10-fold reduced signals were observed in the cell strains in which
the mut allele was knocked out. To examine whether the b-catenin
genotype determines the ABCB1 promoter activity, we searched
the promoter for response elements for TCF4 proteins. Within the
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ABCB1 promoter fragment �1974 to þ 121 (kindly obtained from
K Kohno), seven TCF4-binding sites were identified at �275 to
�261, �419 to 405, �580 to �566, �964 to �950, �1017 to �1003,
�1652 to 1638 and �1814 to �1800 (Kohno et al, 1990; Yamada
et al, 2000) (Figure 3B). The ABCB1 promoter-driven CAT reporter
gene construct was transiently transfected into HCT116 cells
and knockout strains with gain or loss of function b-catenin.
We observed an up to 10-fold higher reporter activity in cells with

mut b-catenin, HCT116, HAB-18mut and HAB-68mut, compared
with HAB-85wt and HAB-92wt cells harbouring wt b-catenin
exclusively (Figure 3C).

b-Catenin mutation, subcellular localisation and ABCB1
expression in human colon carcinomas

We analysed tissue specimens from 33 colon cancer patients with
adenocarcinomas of UICC stages I, II and III. These patients did
not receive any pretreatment (for further characteristics: see
Materials and Methods). Using a previously developed RT–PCR-
based restriction fragment length polymorphism analysis, we
characterised these specimens for their b-catenin mutation status
(Stein et al, 2006). We identified three of these patient tumours
that harbor the heterozygous in-frame deletion mutation of D45 in
exon 3 of the b-catenin gene (Figure 4A). Consistent with the
presence of this mutation, we observed nuclear localisation of
b-catenin together with high ABCB1 levels in all three tumours
that are heterozygous for mut b-catenin mutation (Figure 4B).

b-Catenin mutation status and expression of ABCC1,
ABCG2 and MVP

We also analysed the expression of ABCC1, ABCG2 and MVP in
HCT116, HAB-68mut and HAB-92wt cells. Expression of each of
these chemoresistance-associated genes remained unchanged in
the knockout sublines compared with HCT116, and was not
dependent on the b-catenin genotype as demonstrated at the
mRNA level by quantitative RT–PCR (Figure 5A), and at the
protein level by western blot analyses (Figure 5B) as well as by
immuno flow cytometry (Figure 5C and D).

b-Catenin mutation status and in vitro sensitivity towards
antitumour drugs

To analyse whether drug accumulation is affected in cells with
different b-catenin genotype and ABCB1 expression, we performed
accumulation assays for rhodamine 123. However, rhodamine 123
accumulation was comparable in all the three cell lines, either after
10 min or 15 min of rhodamine 123 uptake (Figure 6A and B),
despite different expression b-catenin genotype and ABCB1 levels.

As shown in Table 1 and Figure 7, the response of HCT116 and
the b-catenin knockout cell lines to a mechanistically diverse
library of anticancer drugs and prototype compounds did not
reveal evidence of drug resistance mediated by b-catenin. A focus
on known MDR substrates in this library does not indicate a
consistent pattern of relative resistance based on the presence of
oncogenic b-catenin. Indeed, the response of HCT116 and the
derived knockout cell lines to the 24 compounds in this library
were remarkably similar.

DISCUSSION

In this report we addressed the potential interplay between Wnt/
b-catenin pathway activation and intrinsic response to chemo-
therapy, as activation of this pathway is observed in almost all
colorectal cancers. We investigated this hypothesis using a
frequently occuring mutation of b-catenin in the context of its
MDR-associated target gene ABCB1. Here we report that mut
b-catenin signalling regulates the expression of the ABCB1 gene in a
dominant fashion. We investigated the relevance of mut b-catenin
with respect to ABCB1 expression levels to clinical cancer with
surgical samples of primary colon carcinomas. We demonstrate
that tumours heterozygous for mut b-catenin showed nuclear
b-catenin together with overexpression of ABCB1. However,
chemosensitivities towards MDR-related as well as non-related
antitumour compounds measured by high throughput screening in
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tumour cell lines harbouring gain-of-function or wt b-catenin
did not differ despite their differences in b-catenin genotype and
ABCB1 expression levels.

We began our studies with HCT116 cells that are heterozygous
for gain-of-function b-catenin (Chan et al, 2002; Kim et al, 2002).
To address the role of gain-of-function b-catenin, knockout strains
harbouring either the mut or the wt b-catenin allele exclusively,
and cell clones with reconstituted heterozygous b-catenin genotype
were analysed (Kim et al, 2002). We clearly demonstrated that cells
with gain-of-function b-catenin, either intrinsically or by transfec-
tion, show higher ABCB1 levels than cells with wt b-catenin.
Moreover, consistent with the b-catenin mutation status, we found
higher ABCB1 promoter activity in cells harbouring gain-of-
function b-catenin. These findings underline in particular that
gain-of-function b-catenin acts in a dominant manner to control
ABCB1 transcription. Thus, the dependence of ABCB1 expression
on b-catenin genotype was clearly shown using this cell line model.
Furthermore, intervening in b-catenin expression using siRNA
acting on b-catenin led to ABCB1 expression knockdown.

Treatment with sulindac reduced ABCB1 expression independent
of the b-catenin genotype. Sulindac inhibits expression and nuclear
accumulation of b-catenin in colorectal cancer cell lines, and induces
proteasome-dependent degradation of b-catenin. Consequently,
b-catenin target genes like Met, c-myc, cyclinD1 and S100A4
are downregulated following sulindac treatment (Rice et al, 2003;
Boon et al, 2004; Gardner et al, 2004; Han et al, 2008; Stein
et al, 2011). Thus, downregulation of ABCB1 by sulindac further
supports the role of ABCB1 as b-catenin transcriptional target.

Our findings are in line with observations of Yamada et al (2000,
2003), who employed microarray technology in the colorectal cell
line DLD1 and identified ABCB1 to be transcriptionally down-
regulated after inactivation of TCF4. The positive correlation of
expression of b-catenin and ABCB1 was also shown in side-
population colon cancer cells, however, ABCG2 expression was
also found to be dependent on b-catenin levels (Chikazawa et al,
2010). The dependence of ABCB1 expression on b-catenin
signalling was also reported for breast cancer cells (Bourguignon
et al, 2009; Liu et al, 2010).
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Figure 4 b-Catenin and ABCB1 expression in human colon carcinomas. (A) Thirty three primary colon carcinomas from untreated patients were
analysed for b-catenin D45 mutation by RT–PCR-based restriction fragment length polymorphism (Stein et al, 2006). We identified three tumours to
be heterozygous for the b-catenin D45 mutation. The mut b-catenin RT–PCR product is cut by Bsl I (fragments 72 and 48 bp), whereas the wt b-catenin
RT–PCR product (123 bp) is not. (B) The nuclear localisation of b-catenin is clearly seen in these three tumours, together with high expression levels of
ABCB1 protein. Subcellular localisation of b-catenin as well as ABCB1 protein expression was determined by immunohistochemistry in consecutive sections
of these heterozygous tumours. Sections without primary antibodies served as controls; bars, 20 mm.
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A large number of genes have been identified as b-catenin
targets, including c-myc and cyclin D1, which are implicated in the
development of colorectal cancer (Arber et al, 1996; He et al, 1998;
Klaus and Birchmeier, 2008; Najdi et al, 2011). The importance of
gain-of-function b-catenin has also been shown for b-catenin
targets such as matrilysin, BMP4 and S100A4, thereby under-
lining the impact of activated b-catenin on tumourigenesis and
metastasis (Kim et al, 2002; Ougolkov et al, 2002; Stein et al, 2006).
Although b-catenin/TCF4-mediated ABCB1 expression represents
only one mechanism within the complex transcriptional regulation
of the ABCB1 gene, our findings on the dominant action of gain-of-
function b-catenin adds to the current knowledge on the role of
ABCB1 in the biology of colorectal cancer.

We extended our in vitro analyses to archival samples of human
primary cancer. We identified tumours that are heterozygous for
this in-frame deletion mutation of D45 in exon 3 of the b-catenin
gene. These tumours showed concomitant nuclear b-catenin and
high ABCB1 expression. This finding, exploiting the defined D45
mutation as an example for gain-of-function b-catenin, provides
a new link between high ABCB1 levels in human colon tumours
and an activated Wnt pathway. Furthermore, increased ABCB1
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Figure 7 b-Catenin genotype did not alter chemosensitivity towards chemotherapeutic drugs. By high throughput screening, chemotherapeutic drugs
were applied in 18 different concentrations to HCT116, HAB-68mut and HAB-92wt cells (for IC50 and for additional drugs see Table 1). Treatment responses
of these cell lines towards the MDR-associated drugs adriamycin (A), paclitaxel (B), vincristine (C), etoposide (D), mitoxanthrone (E) and topotecan (F), as
well as towards the chemotherapeutics melphalan (G) and 5-fluorouracil (H) are shown. Chemosensitivity of HCT116, HAB-68mut and HAB-92wt cells did
not differ despite their differences in b-catenin genotype and ABCB1 expression levels. Cell survival is expressed as percent of control growth. Values are
given as averages of triplicates.
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expression also correlated with b-catenin in adenomatous polyps
from patients with familial adenomatous polyposis (Yamada et al,
2000) as well as in side-population colon cancer cells (Chikazawa
et al, 2010).

To assess the impact of gain-of-function b-catenin on ABCB1
and drug resistance and potential response to therapy in colon
cancer cells we screened a mechanistically diverse library of
anticancer drugs and prototype compounds. Using a high
throughput screening approach designed to minimise the impact
of drug sample handling on measured sensitivity, we found no
evidence for dependence of cell response on b-catenin genotype.
This was rather unexpected, particularly for MDR substrate
drugs, in view of the clear evidence for upregulation of ABCB1
by oncogenic b-catenin. On the other hand, these results are
consistent with the rhodamine efflux studies, which showed
no difference between the cell lines. It may be that the extent of
upregulation in these cell lines is not sufficient to confer functional
drug resistance. It is also possible that expression of other genes in
this HCT116-based cell line model, that is, ABCC1, ABCG2 and
MVP, contribute to the measured drug sensitivity phenotype. The
simultaneous expression of MDR genes has already been described
for HCT116 cells (Izquierdo et al, 1996; Stein et al, 1996, 1997a).
We report here that the expression levels of ABCC1, ABCG2, and
MVP were independent of the b-catenin genotype in HCT116 cells
and the knockout sublines thereof. The simultaneous, unmodu-
lated expression of the MDR-associated proteins ABCC1, ABCG2
and MVP may well contribute to the comparable chemosensitiv-
ities towards the 24 drugs tested.

In SW480 colon cancer cells, however, increased chemosensitiv-
ities towards paclitaxel and irinotecan were reported following
b-catenin silencing by siRNA (Chikazawa et al, 2010). In breast
cancer cells, knockdown of b-catenin by siRNA resulted in
increased chemosensitivity towards doxorubicin and etoposide
(Bourguignon et al, 2009); although these MDR-associated drugs
are also transported by other ABC transporters than ABCB1,
ABCB1 is highly overexpressed in this cell line when compared
with other MDR-related genes (Stein et al, 1997b). For locally

advanced breast cancer, no link between b-catenin and ABCB1
expression was found with respect to neoadjuvant chemotherapy
(Shekhar et al, 2010).

For advanced and metastatic tumours, chemotherapy is
frequently the only feasible treatment. However, the success of
chemotherapy differs from patient to patient. Some patients show
complete responses, others respond partially and/or transiently.
Here we report the impact of gain-of-function b-catenin on
intrinsic ABCB1 expression and in vitro chemotherapy response.
We clearly demonstrate that the mutation status of b-catenin
determines ABCB1 expression in a defined cell line model and in
colon cancer specimens; however, no correlation of this finding
with chemosensitivity towards 24 MDR-related and non-related
antitumour compounds was detected. Further work is needed to
evaluate the role of gain-of-function b-catenin with respect to
additional anticancer compounds of potential use in treatment of
colorectal cancer. Further studies will also be required to reveal the
potential importance of an activated Wnt/b-catenin pathway for
intrinsic ABCB1-mediated resistance in other tumour types.
Likewise, additional insight is needed into factors important for
expression of other ABC transporters, which may mediate drug
resistance. In summary, although ABCB1 is validated as b-catenin
target gene in a cell line model with defined b-catenin genotypes,
the facile detection of b-catenin mutations using the diagnostic
PCR procedure reported here is not sufficient for predicting
therapy response or for individualisation of chemotherapy regi-
mens for patients.
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