358 research outputs found

    Improving the lattice axial vector current

    Full text link
    For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order O(a)O(a) effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.Comment: 7 pages, 3 figures, Proceedings of the 33rd International Symposium on Lattice Field Theory, 14-18 July 2015, Kobe, Japa

    Renormalization of local quark-bilinear operators for Nf=3 flavors of SLiNC fermions

    Get PDF
    The renormalization factors of local quark-bilinear operators are computed non-perturbatively for Nf=3N_f=3 flavors of SLiNC fermions, with emphasis on the various procedures for the chiral and continuum extrapolations. The simulations are performed at a lattice spacing a=0.074a=0.074 fm, and for five values of the pion mass in the range of 290-465 MeV, allowing a safe and stable chiral extrapolation. Emphasis is given in the subtraction of the well-known pion pole which affects the renormalization factor of the pseudoscalar current. We also compute the inverse propagator and the Green's functions of the local bilinears to one loop in perturbation theory. We investigate lattice artifacts by computing them perturbatively to second order as well as to all orders in the lattice spacing. The renormalization conditions are defined in the RI′'-MOM scheme, for both the perturbative and non-perturbative results. The renormalization factors, obtained at different values of the renormalization scale, are translated to the MSˉ{\bar{\rm MS}} scheme and are evolved perturbatively to 2 GeV. Any residual dependence on the initial renormalization scale is eliminated by an extrapolation to the continuum limit. We also study the various sources of systematic errors. Particular care is taken in correcting the non-perturbative estimates by subtracting lattice artifacts computed to one loop perturbation theory using the same action. We test two different methods, by subtracting either the O(g2 a2){\cal O}(g^2\,a^2) contributions, or the complete (all orders in aa) one-loop lattice artifacts.Comment: 33 pages, 27 figures, 6 table

    Meson decay constants from Nf=2 clover fermions

    Get PDF
    We present recent results for meson decay constants calculated on configurations with two flavours of O(a)-improved Wilson fermions. Non-perturbative renormalisation is applied and quark mass dependencies as well as finite volume and discretisation effects are investigated. In this work we also present a computation of the coupling of the light vector mesons to the tensor current using dynamical fermions.Comment: 6 pages, contribution to Lattice2005(Hadron spectrum and quark masses

    A determination of the strange quark mass for unquenched clover fermions using the AWI

    Get PDF
    Using the O(a) Symanzik improved action an estimate is given for the strange quark mass for unquenched (nf=2) QCD. The determination is via the axial Ward identity (AWI) and includes a non-perturbative evaluation of the renormalisation constant. Numerical results have been obtained at several lattice spacings, enabling the continuum limit to be taken. Results indicate a value for the strange quark mass (in the MSbar-scheme at a scale of 2GeV) in the range 100 - 130MeV.Comment: 6 pages, contribution to Lattice2005(Hadron spectrum and quark masses), uses PoS.cl

    Generalized Parton Distributions in Full Lattice QCD

    Full text link
    We present recent results on generalized parton distributions from dynamical lattice QCD calculations. Our set of twelve different combinations of couplings and quark masses allows for a preliminary study of the pion mass dependence of the transverse nucleon structure.Comment: 8 pages, 5 figures; Talk presented by Ph.H. at Light-Cone 2004, Amsterdam, 16 - 20 Augus

    Scattering phases for meson and baryon resonances on general moving-frame lattices

    Get PDF
    A proposal by L\"uscher enables one to compute the scattering phases of elastic two-body systems from the energy levels of the lattice Hamiltonian in a finite volume. In this work we generalize the formalism to S--, P-- and D--wave meson and baryon resonances, and general total momenta. Employing nonvanishing momenta has several advantages, among them making a wider range of energy levels accessible on a single lattice volume and shifting the level crossing to smaller values of mπLm_\pi L.Comment: 41 pages, 3 figures. References added, minor edits to text. Version to be published in Phys. Rev.

    The operator product expansion on the lattice

    Get PDF
    We investigate the Operator Product Expansion (OPE) on the lattice by directly measuring the product (where J is the vector current) and comparing it with the expectation values of bilinear operators. This will determine the Wilson coefficients in the OPE from lattice data, and so give an alternative to the conventional methods of renormalising lattice structure function calculations. It could also give us access to higher twist quantities such as the longitudinal structure function F_L = F_2 - 2 x F_1. We use overlap fermions because of their improved chiral properties, which reduces the number of possible operator mixing coefficients.Comment: 7 pages, 4 postscript figures. Contribution to Lattice 2007, Regensbur

    Generalized Parton Distributions from Lattice QCD

    Get PDF
    We perform a quenched lattice calculation of the first moment of twist-two generalized parton distribution functions of the proton, and assess the total quark (spin and orbital angular momentum) contribution to the spin of the proton.Comment: 11 pages, 4 figures; final version, to be published in Phys. Rev. Let
    • …
    corecore