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We perform a quenched lattice calculation of the first moment of twist-two generalized parton
distribution functions of the proton, and assess the total quark (spin and orbital angular momentum)
contribution to the spin of the proton.
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Generalized parton distributions [1] (GPDs) provide a
deeper understanding of the internal structure of hadrons
in terms of quarks and gluons. While ordinary parton
distributions measure the probability j �x�j2 of finding a
parton with fractional momentum x in the hadron, GPDs
describe the coherence of two different hadron wave
functions  y�x� �=2� �x� �=2�, one where the par-
ton carries fractional momentum x� �=2 and one where
this fraction is x� �=2, from which information about
parton-parton correlation functions can be deduced. As a
consequence, GPDs depend on the momentum transfer �2

between the initial and final hadron, which provides
further information on the transverse location of quarks
and gluons [2]. Spatial images of hadrons can thus be
obtained, where the resolution is determined by the vir-
tuality Q2 of the incoming photon. Last, but not least,
GPDs allow us to isolate the contribution of the quark
orbital angular momentum to the spin of hadrons. Lattice
QCD is the only known method that is able to compute
moments of GPDs from first principles.

We will restrict ourselves to the GPDsHq and Eq of the
nucleon, where q � u; d; . . . denotes the flavor of the
struck quark. We will not consider the gluon sector here.
The lowest, zeroth moments of Hq and Eq are given by
0031-9007=04=92(4)=042002(4)$22.50 
the Dirac and Pauli form factors:
Z 1

�1
dxHq�x; �;�2� � Fq1 ��

2� ; (1)

Z 1

�1
dxEq�x; �;�

2� � Fq2 ��
2� : (2)

Both form factors have been computed on the lattice in a
similar calculation [3] to the present one and found to be
well described by a dipole ansatz

Fq1;2��
2� � Fq1;2�0�=�1� �2=M2

1;2�
2 (3)

for sufficiently small (and accessible) momenta, with di-
pole masses M1;2 of the order of the �, ! mass, when
extrapolated to the physical pion mass.

The first moments of Hq and Eq are of the form [1]
Z 1

�1
dx xHq�x; �;�2� � Aq2��

2� � �2Cq2��
2� ; (4)

Z 1

�1
dx xEq�x; �;�

2� � Bq2��
2� � �2Cq2��

2� ; (5)

where Aq2��
2�, Bq2��

2�, and Cq2��
2� are generalized form

factors, which are given by the nucleon matrix elements
of the energy-momentum tensor (EMT):
hp0jOq
f��gjpi 

i
2
hp0j �qq�f�D

$

�gqjpi

� Aq2��
2� �uu�p0��f� �pp�gu�p� � Bq2��

2�
i

2mN
�uu�p0�����f� �pp�gu�p� � Cq2��

2�
1

mN
�uu�p0�u�p��f���g : (6)
Here mN denotes the nucleon mass, �pp � 1
2 �p

0 � p�, � �
p0 � p, and curly brackets refer to symmetrization of
indices and subtraction of traces. The EMT has twist
two and spin two. It is assumed to be renormalized at
the scale �, which makes Aq2��

2�, Bq2��
2�, and Cq2��

2�
scale and scheme dependent. For the classification of
states of definite JPC contributing to (6) in the
t-channel, see [4]. The so-called skewedness parameter
� is defined by � � �n � �, where n is a lightlike vector
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with n � �pp � 1, and bounded by j�j � 2
����������������������������������
�2=��2 � 4m2

N�
q

.
In the forward limit, �2 ! 0, we have

Aq2�0� � hxqi 
Z 1

0
dx x�q"�x� � q#�x��; (7)

where q"�#��x� are the usual quark distributions with spin
parallel (antiparallel) to the spin of the nucleon.
Furthermore, one derives [5]

1

2
�Aq2�0� � Bq2�0�� � Jq; (8)

where Jq is the angular momentum of the q quark, and
J �

P
qJq is the total angular momentum of the nucleon

carried by the quarks. The angular momentum decom-
poses, in a gauge invariant way, into two pieces:
FIG. 1. The generalized form factors Au2 , Bu2 , and Cu2 at % �
0:1333, together with the dipole fit and the extrapolated values
at �2 � 0 (�).
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Jq � Lq � Sq; (9)

where Lq is the orbital angular momentum and

Sq �
1

2
�q 

1

2

Z 1

0
dx �q"�x� � q#�x�� (10)

is the spin of the quark. We know �q from separate
calculations [6,7], so that Lq can be computed from (8).

In this Letter, we perform a quenched lattice calcula-
tion of the generalized form factors Aq2��

2�, Bq2��
2�, and

Cq2��
2�. The quenched approximation neglects fluctua-

tions of virtual quark-antiquark pairs from the Dirac
sea. The nonforward matrix elements (6) are computed
from ratios of three- and two-point functions following
[3]. Further details are given in [8]. To keep cutoff effects
small, we use nonperturbatively O�a� improved Wilson
FIG. 2. The generalized form factors Ad2 , Bd2 , and Cd2 at % �
0:1333, together with the dipole fit and the extrapolated values
at �2 � 0 (�).
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TABLE I. Parameters of the dipole fit. In the bottom row we give the parameters extrapolated to the physical pion mass.

% M �GeV� Au2�0� Bu2�0� Cu2�0� Ad2�0� Bd2�0� Cd2�0�

0.1324 1.69(05) 0.419(07) 0.344(028) �0:084�26� 0.188(04) �0:281�20� �0:071�15�
0.1333 1.58(06) 0.415(10) 0.334(044) �0:101�35� 0.176(05) �0:260�29� �0:073�19�
0.1342 1.41(10) 0.404(19) 0.357(117) �0:117�70� 0.158(10) �0:265�80� �0:067�35�

1.11(20) 0.400(22) 0.334(113) �0:134�81� 0.147(11) �0:232�77� �0:071�42�

FIG. 3. The dipole mass M as a function of m,, together with
a linear extrapolation to the physical pion mass (�).
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fermions. The calculation is done on 163 32 lattices at
& � 6:0 and for three different hopping parameters, % �
0:1324, 0:1333, and 0:1342, which allows us to extrapo-
late our results to the chiral limit. Using r0 � 0:5 fm to
set the scale, which results in the inverse lattice spacing
1=a � 2:12GeV, the corresponding pion masses are
1070, 870, and 640 MeV. If we use the nucleon mass
extrapolated to the chiral limit to set the scale, the pion
masses are 930, 760, and 550 MeV, and 1=a � 1:84GeV.
The corresponding nucleon masses and the choice of
nucleon momenta p; p0 can be inferred from [3]. For
the EMT we consider two sets of (Euclidean) operators:

1���
2

p �O�� �O���; 1 � �< � � 4; (11)

and

1

2
�O11 �O22 �O33 �O44� ;

1���
2

p �O33 �O44� ;
1���
2

p �O11 �O22�:

(12)

Each set transforms irreducibly under the hypercubic
group. The operators (11) and (12) are renormalized mul-
tiplicatively, O��� � Z�a��O�a�, with renormalization
constants [6] Zv2a and Zv2b , respectively. The renormal-
ization constants are computed nonperturbatively [9]
following [10]. We obtain ZMSv2a �2GeV� � 1:10 and
ZMSv2b �2GeV� � 1:09. The following results refer to the
MS scheme at the renormalization scale � � 2GeV.

In Figs. 1 and 2 we show the generalized form factors
Au2��

2�, Bu2��
2�, Cu2��

2�, and Ad2��
2�, Bd2��

2�, Cd2��
2� of

the proton for % � 0:1333. Data points with larger errors
are not shown here but are included in the fit. The corre-
sponding form factors of the neutron are obtained by
interchanging u and d. Similarly good results are found
for % � 0:1324 and 0:1342. The generalized form factors
can be well described by the dipole ansatz

Aq2��
2� � Aq2�0�=�1� �2=M2�2; (13)

and similarly for Bq2 and Cq2 . Fits of Au2��
2� and Ad2��

2�
give the same dipole mass M within errors. The dipole
masses obtained from separate fits of Bu2��

2�, Bd2��
2�,

Cu2��
2�, and Cd2��

2� are found to be consistent with
that value. We therefore have decided to fit our data
by a common dipole mass M. Our data do not favor a
monopole behavior. The results of the fits are shown in
042002-3
Table I. For a reliable extrapolation to �2 � 0 we find it
important to cover a wide enough range of �2 values.
This may be the reason why our dipole masses turn out to
be systematically larger than those found in a previous
calculation [11].

In Fig. 3 we show the dipole mass M as a function of
the pion mass. The mass values appear to lie on a straight
line, as was observed already in the case of the nucleon
form factors [3]. A linear extrapolation in m, to the
physical pion mass gives M � 1:1�2� GeV. This value is
close to the physical masses of the f2, a2 mesons, which
supports the hypothesis of tensor meson dominance. A
quadratic extrapolation in m, leads to M � 1:3�1�GeV.
The form factor data Aq2�0�, B

q
2�0�, and Cq2�0� show little

variation with the quark mass and are extrapolated quad-
ratically in m, to the physical pion mass. The results are
shown in the bottom row of Table I. It should be stressed
that all quantities refer (at best) to valence quark distri-
butions, because sea quark effects have been neglected. In
unquenched simulations there are also quarkline discon-
nected contributions. For an estimate, see [11].

If the dipole behavior (3), (13) continues to hold for the
higher moments as well, and if we assume that the dipole
masses continue to grow in a Regge-like fashion, we
would obtain

Z 1

�1
dx xn Hq�x; 0;�

2� � hxnqi=�1��2=M2
n�1�

2; (14)

with M2
l � const� l=�0, �0 being the slope of the Regge

trajectory. This would mean that with increasing momen-
tum transfer j�2j the lower moments of Hq�x; 0;�

2� are
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TABLE II. The total angular momentum and its individual
contributions, extrapolated to the physical pion mass.

J Ju Jd Su Sd

0.33(7) 0.37(6) �0:04�4� 0.42(1) �0:12�1�

FIG. 4. The total angular momentum J, together with a
quadratic extrapolation to the physical pion mass (�).
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suppressed more than the higher ones, so that the ob-
served peak in Hq�x; 0; 0� � q"�x� � q#�x� around x �
0:2 is shifted towards the higher values of x. As a result,
the �2 dependence cannot be factorized in a simple way,
as is sometimes assumed. Knowing hxnqi, we can recon-
struct Hq�x; 0;�2� from (14) by inverse Mellin transform.
The � dependence of both Hq and Eq appears to be rather
weak, based on our knowledge of the first two moments,
and in the isovector channel (corresponding to proton-
neutron or u-d matrix elements) it largely cancels out.

In Fig. 4 we show the total angular momentum J �
Ju � Jd. The dependence on the pion mass is rather flat, as
expected [12]. The errors are due to the relatively large
statistical errors of Bu2 and Bd2 and the fact that Bu2 and Bd2
cancel to a large extent. In Table II we give our results for
J, and separately for Jq and Sq, extrapolated quadratically
(linearly in m2

,) to the physical pion mass. The numbers
for Sq refer to our latest results [9], computed from the
nonperturbatively improved axial vector current with
nonperturbative renormalization factors. It turns out
that the total angular momentum J carried by the quarks
amounts to �70% of the spin of the (quenched) proton,
leaving a contribution of �30% for the gluons. The major
contribution is given by the u quark, while the contribu-
tion of the d quark is found to be negligible, which hints
at strong pairing effects. Our result for J is somewhat
smaller than that of [11,13]. We are able to compute Lq
now. The total orbital angular momentum of the quarks
turns out to be consistent with zero:

L  Lu � Ld � 0:03�7�: (15)

This indicates that (at virtuality� � 2 GeV) the parton’s
transverse momentum in the (quenched) proton is small.
A similar conclusion can be drawn from our earlier find-
ing [14] of a small twist-three contribution d2 to the
second moment of the polarized structure function g2.

The generalized form factors Cq2��
2� contribute to the

beam charge asymmetry of deeply virtual Compton scat-
tering. We obtain a rather small value: Cu2�0� � Cd2�0� �
042002-4
�0:2�1�. This result is to be compared with the value
�0:8 obtained in the chiral quark-soliton model at � �
0:6 GeV [15]. For a discussion, see also [16].

As far as one can compare, quenched and unquenched
results agree surprisingly well, and we do not expect to
find significant differences here either. For a recent study
of quenching artifacts, as well as cutoff effects, see [17].
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