9 research outputs found

    A third blind test of crystal structure prediction

    Get PDF
    Following the interest generated by two previous blind tests of crystal structure prediction (CSP1999 and CSP2001), a third such collaborative project (CSP2004) was hosted by the Cambridge Crystallographic Data Centre. A range of methodologies used in searching for and ranking the likelihood of predicted crystal structures is represented amongst the 18 participating research groups, although most are based on the global minimization of the lattice energy. Initially the participants were given molecular diagrams of three molecules and asked to submit three predictions for the most likely crystal structure of each. Unlike earlier blind tests, no restriction was placed on the possible space group of the target crystal structures. Furthermore, Z' = 2 structures were allowed. Part-way through the test, a partial structure report was discovered for one of the molecules, which could no longer be considered a blind test. Hence, a second molecule from the same category (small, rigid with common atom types) was offered to the participants as a replacement. Success rates within the three submitted predictions were lower than in the previous tests - there was only one successful prediction for any of the three 'blind' molecules. For the 'simplest' rigid molecule, this lack of success is partly due to the observed structure crystallizing with two molecules in the asymmetric unit. As in the 2001 blind test, there was no success in predicting the structure of the flexible molecule. The results highlight the necessity for better energy models, capable of simultaneously describing conformational and packing energies with high accuracy. There is also a need for improvements in search procedures for crystals with more than one independent molecule, as well as for molecules with conformational flexibility. These are necessary requirements for the prediction of possible thermodynamically favoured polymorphs. Which of these are actually realised is also influenced by as yet insufficiently understood processes of nucleation and crystal growth

    Towards crystal structure prediction of complex organic compounds - A report on the fifth blind test

    No full text
    Following on from the success of the previous crystal structure prediction blind tests (CSP1999, CSP2001, CSP2004 and CSP2007), a fifth such collaborative project (CSP2010) was organized at the Cambridge Crystallographic Data Centre. A range of methodologies was used by the participating groups in order to evaluate the ability of the current computational methods to predict the crystal structures of the six organic molecules chosen as targets for this blind test. The first four targets, two rigid molecules, one semi-flexible molecule and a 1:1 salt, matched the criteria for the targets from CSP2007, while the last two targets belonged to two new challenging categories - a larger, much more flexible molecule and a hydrate with more than one polymorph. Each group submitted three predictions for each target it attempted. There was at least one successful prediction for each target, and two groups were able to successfully predict the structure of the large flexible molecule as their first place submission. The results show that while not as many groups successfully predicted the structures of the three smallest molecules as in CSP2007, there is now evidence that methodologies such as dispersion-corrected density functional theory (DFT-D) are able to reliably do so. The results also highlight the many challenges posed by more complex systems and show that there are still issues to be overcome. © 2011 International Union of Crystallography Printed in Singapore - all rights reserved

    Expression Suppression and Activity Inhibition of TRPM7 Regulate Cytokine Production and Multiple Organ Dysfunction Syndrome During Endotoxemia: A New Target for Sepsis

    No full text
    Background: Main pathological features detected during sepsis and endotoxemia include over-secretion of pro-inflammatory cytokines and multiorgan dysfunction syndrome (MODS). Unfortunately, current clinical efforts to treat sepsis are unsatisfactory, and mortality remains high. Interestingly, transient receptor potential (TRP) melastatin 7 (TRPM7) ion channel controlling Ca2+ and Mg2+ permeability is involved in cytokine production and inflammatory response. Furthermore, TRPM7 downregulation has been shown to alleviate local symptoms in some models of sepsis, but its effects at a systemic level remain to be explored. Objective: To test whether TRPM7 mediates cytokine production and MODS during endotoxemia. Methods: Endotoxemic and sham-endotoxemic rats were subjected to pharmacological inhibition of TRPM7 using carvacrol, or to expression suppression by adenovirus delivery of shRNA (AdV(shTRPM7)). Then, cytokine and MODS levels in the blood were measured. Results: Inhibition of TRPM7 with carvacrol and suppression with AdV(shTRPM7 )were both efficient in inhibiting the over-secretion of pro-inflammatory cytokines TNF-alpha, IL-1 beta, IL-6, and IL-12 in endotoxemic rats, without inducing downregulation in blood levels of anti-inflammatory cytokines IL-10 and IL-4. Additionally, the use of carvacrol and AdV(shTRPM7) significantly prevented liver and pancreas dysfunction, altered metabolic function, and hypoglycemia, induced by endotoxemia. Furthermore, muscle mass wasting and cardiac muscle damage were also significantly reduced by the use of carvacrol and AdV(shTRPM7) in endotoxemic rats. Conclusion: Our results indicate TRPM7 ion channel as a key protein regulating inflammatory responses and MODS during sepsis. Moreover, TRPM7 appears as a novel molecular target for the management of sepsis

    Engineering Applications of Data Envelopment Analysis

    No full text

    The RNase a superfamily: Generation of diversity and innate host defense

    No full text
    corecore