2,689 research outputs found

    High-precision gravimetric survey in support of lunar laser ranging at Haleakala, Maui, 1976 - 1978

    Get PDF
    The planning, observations and adjustment of high-precision gravity survey networks established on the islands of Maui and Oahu as part of the geodetic-geophysical program in support of lunar laser ranging at Haleakala, Maui, Hawaii are described. The gravity survey networks include 43 independently measured gravity differences along the gravity calibration line from Kahului Airport to the summit of Mt. Haleakala, together with some key points close to tidal gauges on Maui, and 40 gravity differences within metropolitan Honolulu. The results of the 1976-1978 survey are compared with surveys made in 1961 and in 1964-1965. All final gravity values are given in the system of the international gravity standardization net 1971 (IGSN 71); values are obtained by subtracting 14.57 mgal from the Potsdam value at the gravity base station at the Hickam Air Force Base, Honolulu

    Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOs4_{4}Sb12_{12}

    Full text link
    Transverse-field muon spin rotation (μ\muSR) experiments in the heavy-fermion superconductor PrOs4_{4}Sb12_{12} (Tc=1.85T_{c}=1.85 K) suggest that the superconducting penetration depth λ(T)\lambda(T) is temperature-independent at low temperatures, consistent with a gapped quasiparticle excitation spectrum. In contrast, radiofrequency (rf) inductive measurements yield a stronger temperature dependence of λ(T)\lambda(T), indicative of point nodes in the gap. This discrepancy appears to be related to the multiband structure of PrOs4_{4}Sb12_{12}. Muon Knight shift measurements in PrOs4_{4}Sb12_{12} suggest that the perturbing effect of the muon charge on the neighboring Pr3+^{3+} crystalline electric field is negligibly small, and therefore is unlikely to cause the difference between the μ\muSR and rf results.Comment: 10 pages, 7 figure

    Delocalization of slowly damped eigenmodes on Anosov manifolds

    Full text link
    We look at the properties of high frequency eigenmodes for the damped wave equation on a compact manifold with an Anosov geodesic flow. We study eigenmodes with spectral parameters which are asymptotically close enough to the real axis. We prove that such modes cannot be completely localized on subsets satisfying a condition of negative topological pressure. As an application, one can deduce the existence of a "strip" of logarithmic size without eigenvalues below the real axis under this dynamical assumption on the set of undamped trajectories.Comment: 28 pages; compared with version 1, minor modifications, add two reference

    Spin dynamics in copper metaborate CuB2O4CuB_2 O_4 studied by muon spin relaxation

    Full text link
    Copper metaborate CuB2_2O4_{4} was studied by muon spin relaxation measurements in order to clarify its static and dynamic magnetic properties. The time spectra of muon spin depolarization suggest that the local fields at the muon site contain both static and fluctuating components in all ordered phases down to 0.3 K. In the weak ferromagnetic phase (20 K~>T>>T>~9.3 K), the static component is dominant. On the other hand, upon cooling the fluctuating component becomes dominant in the incommensurate helix phase (9.3K > T > 1.4K). The dynamical fluctuations of the local fields persist down to 0.3K, where a new incommensurate phase (T < 1.4K) is expected to appear. This result suggests that spins fluctuate even at T \to 0. We propose two possible origins of the remnant dynamical spin fluctuations: frustration of the exchange interactions and the dynamic behavior of the soliton lattice

    Disorder, inhomogeneity and spin dynamics in f-electron non-Fermi liquid systems

    Full text link
    Muon spin rotation and relaxation (μ\muSR) experiments have yielded evidence that structural disorder is an important factor in many f-electron-based non-Fermi-liquid (NFL) systems. Disorder-driven mechanisms for NFL behaviour are suggested by the observed broad and strongly temperature-dependent μ\muSR (and NMR) linewidths in several NFL compounds and alloys. Local disorder-driven theories (Kondo disorder, Griffiths-McCoy singularity) are, however, not capable of describing the time-field scaling seen in muon spin relaxation experiments, which suggest cooperative and critical spin fluctuations rather than a distribution of local fluctuation rates. A strong empirical correlation is established between electronic disorder and slow spin fluctuations in NFL materialsComment: 24 pages, 15 figures, submitted to J. Phys.: Condens. Matte

    Evidence for a two component magnetic response in UPt3

    Get PDF
    The magnetic response of the heavy fermion superconductor UPt_3 has been investigated on a microscopic scale by muon Knight shift studies. Two distinct and isotropic Knight shifts have been found for the field in the basal plane. While the volume fractions associated with the two Knight shifts are approximately equal at low and high temperatures, they show a dramatic and opposite temperature dependence around T_N. Our results are independent on the precise muon localization site. We conclude that UPt_3 is characterized by a two component magnetic response.Comment: 5 pages, 4 figure

    Lattice Distortion and Octupole Ordering Model in CexLa1-xB6

    Full text link
    Possible order parameters of the phase IV in CexLa1-xB6 are discussed with special attention to the lattice distortion recently observed. A \Gamma_{5u}-type octupole order with finite wave number is proposed as the origin of the distortion along the [111] direction. The \Gamma_8 crystalline electric field (CEF) level splits into three levels by a mean field with the \Gamma_{5u} symmetry. The ground and highest singlets have the same quadrupole moment, while the intermediate doublet has an opposite sign. It is shown that any collinear order of \Gamma_{5u}-type octupole moment accompanies the \Gamma_{5g}-type ferro-quadrupole order, and the coupling of the quadrupole moment with the lattice induces the distortion. The cusp in the magnetization at the phase transition is reproduced, but the internal magnetic field due to the octupole moment is smaller than the observed one by an order of magnitude.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    muSR linewidth and isotropic pairing in superconducting PrOs4Sb12

    Full text link
    Transverse-field muon spin rotation measurements in the vortex-lattice mixed state of the heavy-fermion (HF) superconductor PrOs4Sb12 yield a temperature dependence of the penetration depth indicative of an isotropic or nearly isotropic energy gap. This is not seen to date in any other HF superconductor and is a signature of isotropic pairing symmetry, possibly related to a novel nonmagnetic "quadrupolar Kondo" HF mechanism in PrOs4Sb12. The T = 0 relaxation rate \sigma_s(0) = 0.91(1) \mu s^-1 yields an estimated penetration depth \lambda(0) = 3440(20) \AA, which is considerably shorter than in other HF superconductors.Comment: 4 pages, 5 figure
    • …
    corecore