10 research outputs found

    Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico

    Get PDF
    This study examines the sensitivity of the North American warm season diurnal cycle of precipitation to changes in horizontal resolution in three atmospheric general circulation models, with a primary focus on how the parameterized moist processes respond to improved resolution of topography and associated local/regional circulations on the diurnal time scale. It is found that increasing resolution (from approximately 2?? to 1/2?? in latitude-longitude) has a mixed impact on the simulated diurnal cycle of precipitation. Higher resolution generally improves the initiation and downslope propagation of moist convection over the Rockies and the adjacent Great Plains. The propagating signals, however, do not extend beyond the slope region, thereby likely contributing to a dry bias in the Great Plains. Similar improvements in the propagating signals are also found in the diurnal cycle over the North American monsoon region as the models begin to resolve the Gulf of California and the surrounding steep terrain. In general, the phase of the diurnal cycle of precipitation improves with increasing resolution, though not always monotonically. Nevertheless, large errors in both the phase and amplitude of the diurnal cycle in precipitation remain even at the highest resolution considered here. These errors tend to be associated with unrealistically strong coupling of the convection to the surface heating and suggest that improved simulations of the diurnal cycle of precipitation require further improvements in the parameterizations of moist convection processes.open37

    Assessment of the APCC Coupled MME Suite in Predicting the Distinctive Climate Impacts of Two Flavors of ENSO during Boreal Winter

    Get PDF
    Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events

    An analysis of the warm-season diurnal cycle over the continental united states and northern Mexico in general circulation models

    Get PDF
    The diurnal cycle of warm-season rainfall over the continental United States and northern Mexico is analyzed in three global atmospheric general circulation models (AGCMs) from NCEP, GFDL, and the NASA Global Modeling Assimilation Office (GMAO). The results for each model are based on an ensemble of five summer simulations forced with climatological sea surface temperatures. Although the overall patterns of time-mean (summer) rainfall and low-level winds are reasonably well simulated, all three models exhibit substantial regional deficiencies that appear to be related to problems with the diurnal cycle. Especially prominent are the discrepancies in the diurnal cycle of precipitation over the eastern slopes of the Rocky Mountains and adjacent Great Plains, including the failure to adequately capture the observed nocturnal peak. Moreover, the observed late afternoon-early evening eastward propagation of convection from the mountains into the Great Plains is not adequately simulated, contributing to the deficiencies in the diurnal cycle in the Great Plains. In the southeast United States, the models show a general tendency to rain in the early afternoon - several hours earlier than observed. Over the North American monsoon region in the southwest United States and northern Mexico, the phase of the broadscale diurnal convection appears to be reasonably well simulated, though the coarse resolution of the runs precludes the simulation of key regional phenomena. All three models employ deep convection schemes that assume fundamentally the same buoyancy closure based on simplified versions of the Arakawa-Schubert scheme. Nevertheless, substantial differences between the models in the diurnal cycle of convection highlight the important differences in their implementations and interactions with the boundary layer scheme. An analysis of local diurnal variations of convective available potential energy (CAPE) shows an overall tendency for an afternoon peak - a feature well simulated by the models. The simulated diurnal cycle of rainfall is in phase with the local CAPE variation over the southeast United States and the Rocky Mountains where the local surface boundary forcing is important in regulating the diurnal cycle of convection. On the other hand, the simulated diurnal cycle of rainfall tends to be too strongly tied to CAPE over the Great Plains, where the observed precipitation and CAPE are out of phase, implying that free atmospheric large-scale forcing plays a more important role than surface heat fluxes in initiating or inhibiting convection.open383

    Role of convection triggers in the simulation of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model

    No full text
    Recent comparisons of a number of general circulation models (GCMs) have shown that most of them have deficiencies in the simulation of the diurnal cycle of warm season precipitation. The deficiencies are particularly pronounced over the United States Great Plains where the models generally fail to capture the nocturnal rainfall maximum found in the observations. By using the National Centers for Environmental Prediction's Global Forecasting System (NCEP GFS) GCM, which is unusual in that it produces a realistic nocturnal rainfall signal over the Great Plains, this study examines the nature and realism of the mechanisms responsible for the nocturnal rain in the GCM. A series of sensitivity experiments highlight the importance of triggers implemented in the convection scheme. Specifically, the convection trigger function that the cloud base (defined as the level of free convection) must be within 150 hPa depth from the convection starting level (which crudely represents an upper limit of convective inhibition) plays a key role on the realistic simulation of the diurnal phase of convection. On the basis of this trigger, the nighttime elevation of the convection starting level (defined as the maximum level of moist static energy from the surface) above the boundary layer inversion provides the condition favorable for the development of nocturnal precipitation over the Great Plains. The results are discussed in terms of their implications for improving our understanding and parameterizations of the physical processes that generate nocturnal rain in this and other regions with large diurnal cycles.close232
    corecore