217 research outputs found

    Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    Get PDF
    Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. H-bonds involving atoms from residues that are close to each other in the main-chain sequence stabilize secondary structure elements. H-bonds between atoms from distant residues stabilize a protein’s tertiary structure. However, H-bonds greatly vary in stability. They form and break while a protein deforms. For instance, the transition of a protein from a nonfunctional to a functional state may require some H-bonds to break and others to form. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. Other local interactions may reinforce (or weaken) an H-bond. This paper describes inductive learning methods to train a protein-independent probabilistic model of H-bond stability from molecular dynamics (MD) simulation trajectories. The training data describes H-bond occurrences at successive times along these trajectories by the values of attributes called predictors. A trained model is constructed in the form of a regression tree in which each non-leaf node is a Boolean test (split) on a predictor. Each occurrence of an H-bond maps to a path in this tree from the root to a leaf node. Its predicted stability is associated with the leaf node. Experimental results demonstrate that such models can predict H-bond stability quite well. In particular, their performance is roughly 20 % better than that of models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a give

    Prevalence of neck pain in subjects with metabolic syndrome - a cross-sectional population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MetS) is increasingly common. Obesity has been suggested to associate with neck pain but prevalence of neck pain in subjects with MetS has not been studied. Aim of this study was to analyse the association between MetS and neck pain.</p> <p>Methods</p> <p>The study population consisted of 1294 middle-aged subjects in Pieksämäki, Finland. A total of 399 males and 500 females participated (69%). The mean age of both males and females was 46 years. Clinical and biochemical measurements were taken. The participants filled out a standard questionnaire. Psychological distress was assessed with the 12-item General Health Questionnaire (GHQ-12). Neck pain was defined as neck pain perceived daily. MetS was defined using National Cholesterol Education Program (NCEP) criteria. Statistical comparisons between the groups were performed using a bootstrap-type t-test or Chi-Square test. Risk ratios of having neck pain were calculated using generalised linear models with age, smoking, alcohol use, exercise and GHQ-12 score as covariates.</p> <p>Results</p> <p>The prevalence of MetS was 33% in males and 29% in females. Neck pain was present in 11% (N = 42) of males and 19% (N = 93) of females (P < 0.001). The prevalence of neck pain was 7.9% (95% CI, 4.9% to 12%) among male subjects without MetS and 16% (95% CI, 10% to 23%) among those with MetS. The respective proportions among females were 16% (95% CI, 12% to 20%) and 25% (95% CI, 18% to 33%). The multivariate analysis showed an increased risk of neck pain in males with MetS (RR 2.1, 95% CI, 1.2 to 3.7, P = 0.010) and in females with MetS (RR 1.5, 95% CI, 1.0 to 2.1, P = 0.040).</p> <p>Conclusions</p> <p>MetS was associated with neck pain. This association was stronger in males, but the prevalence of neck pain was higher in females. Prospective studies should explore the potential causal association between neck pain and MetS and the potential common background factors of neck pain and MetS.</p

    Diacylglycerol-Stimulated Endocytosis of Transferrin in Trypanosomatids Is Dependent on Tyrosine Kinase Activity

    Get PDF
    Small molecule regulation of cell function is an understudied area of trypanosomatid biology. In Trypanosoma brucei diacylglycerol (DAG) stimulates endocytosis of transferrin (Tf). However, it is not known whether other trypanosomatidae respond similarly to the lipid. Further, the biochemical pathways involved in DAG signaling to the endocytic system in T. brucei are unknown, as the parasite genome does not encode canonical DAG receptors (e.g. C1-domains). We established that DAG stimulates endocytosis of Tf in Leishmania major, and we evaluated possible effector enzymes in the pathway with multiple approaches. First, a heterologously expressed glycosylphosphatidylinositol phospholipase C (GPI-PLC) activated endocytosis of Tf 300% in L. major. Second, exogenous phorbol ester and DAGs promoted Tf endocytosis in L. major. In search of possible effectors of DAG signaling, we discovered a novel C1-like domain (i.e. C1_5) in trypanosomatids, and we identified protein Tyr kinases (PTKs) linked with C1_5 domains in T. brucei, T. cruzi, and L. major. Consequently, we hypothesized that trypanosome PTKs might be effector enzymes for DAG signaling. General uptake of Tf was reduced by inhibitors of either Ser/Thr or Tyr kinases. However, DAG-stimulated endocytosis of Tf was blocked only by an inhibitor of PTKs, in both T. brucei and L. major. We conclude that (i) DAG activates Tf endocytosis in L. major, and that (ii) PTKs are effectors of DAG-stimulated endocytosis of Tf in trypanosomatids. DAG-stimulated endocytosis of Tf may be a T. brucei adaptation to compete effectively with host cells for vertebrate Tf in blood, since DAG does not enhance endocytosis of Tf in human cells

    Transcriptional Activation of Pyoluteorin Operon Mediated by the LysR-Type Regulator PltR Bound at a 22 bp lys Box in Pseudomonas aeruginosa M18

    Get PDF
    Pseudomonas aeruginosa M18, a rhizosphere-isolated bacterial strain showing strong antifungal activity, can produce secondary metabolites such as phenazine-1-carboxylic acid and pyoluteorin (Plt). The LysR-type transcriptional regulator PltR activates the Plt biosynthesis operon pltLABCDEFG, the expression of which is induced by Plt. Here, we identified and characterized the non-conserved pltL promoter (pltLp) specifically activated by PltR and its upstream neighboring lys box from the complicated pltR–pltL intergenic sequence. The 22 bp palindromic lys box, which consists of two 9 bp complementary inverted repeats interrupted by 4 bp, was found to contain the conserved, GC-rich LysR-binding motif (T-N11-A). Evidence obtained in vivo from mutational and lacZ report analyses and in vitro from electrophoretic mobility shift assays reveals that the PltR protein directly bound to the pltLp region as the indispensable binding motif “lys box”, thereby transcriptionally activating the pltLp-driven plt operon expression. Plt, as a potential non-essential coinducer of PltR, specifically induced the pltLp expression and thus strengthened its biosynthetic plt operon expression

    Genetic Analysis of Anti-Amoebae and Anti-Bacterial Activities of the Type VI Secretion System in Vibrio cholerae

    Get PDF
    A type VI secretion system (T6SS) was recently shown to be required for full virulence of Vibrio cholerae O37 serogroup strain V52. In this study, we systematically mutagenized each individual gene in T6SS locus and characterized their functions based on expression and secretion of the hemolysin co-regulated protein (Hcp), virulence towards amoebae of Dictyostelium discoideum and killing of Escherichia coli bacterial cells. We group the 17 proteins characterized in the T6SS locus into four categories: twelve (VipA, VipB, VCA0109–VCA0115, ClpV, VCA0119, and VasK) are essential for Hcp secretion and bacterial virulence, and thus likely function as structural components of the apparatus; two (VasH and VCA0122) are regulators that are required for T6SS gene expression and virulence; another two, VCA0121 and valine-glycine repeat protein G 3 (VgrG-3), are not essential for Hcp expression, secretion or bacterial virulence, and their functions are unknown; the last group is represented by VCA0118, which is not required for Hcp expression or secretion but still plays a role in both amoebae and bacterial killing and may therefore be an effector protein. We also showed that the clpV gene product is required for Dictyostelium virulence but is less important for killing E. coli. In addition, one vgrG gene (vgrG-2) outside of the T6SS gene cluster was required for bacterial killing but another (vgrG-1) was not. However, a bacterial killing defect was observed when vgrG-1 and vgrG-3 were both deleted. Several genes encoded in the same putative operon as vgrG-1 and vgrG-2 also contribute to virulence toward Dictyostelium but have a smaller effect on bacterial killing. Our results provide new insights into the functional requirements of V. cholerae's T6SS in the context of secretion as well as killing of bacterial and eukaryotic phagocytic cells

    Metabolic Adaptation of Ralstonia solanacearum during Plant Infection: A Methionine Biosynthesis Case Study

    Get PDF
    MetE and MetH are two distinct enzymes that catalyze a similar biochemical reaction during the last step of methionine biosynthesis, MetH being a cobalamin-dependent enzyme whereas MetE activity is cobalamin-independent. In this work, we show that the last step of methionine synthesis in the plant pathogen Ralstonia solanacearum is under the transcriptional control of the master pathogenicity regulator HrpG. This control is exerted essentially on metE expression through the intermediate regulator MetR. Expression of metE is strongly and specifically induced in the presence of plant cells in a hrpG- and metR-dependent manner. metE and metR mutants are not auxotrophic for methionine and not affected for growth inside the plant but produce significantly reduced disease symptoms on tomato whereas disruption of metH has no impact on pathogenicity. The finding that the pathogen preferentially induces metE expression rather than metH in the presence of plant cells is indicative of a probable metabolic adaptation to physiological host conditions since this induction of metE occurs in an environment in which cobalamin, the required co-factor for MetH, is absent. It also shows that MetE and MetH are not functionally redundant and are deployed during specific stages of the bacteria lifecycle, the expression of metE and metH being controlled by multiple and distinct signals

    Disgust Sensitivity and the Neurophysiology of Left- Right Political Orientations

    Get PDF
    Disgust has been described as the most primitive and central of emotions. Thus, it is not surprising that it shapes behaviors in a variety of organisms and in a variety of contexts—including homo sapien politics. People who believe they would be bothered by a range of hypothetical disgusting situations display an increased likelihood of displaying right-of-center rather than left-of-center political orientations. Given its primal nature and essential value in avoiding pathogens disgust likely has an effect even without registering in conscious beliefs. In this article, we demonstrate that individuals with marked involuntary physiological responses to disgusting images, such as of a man eating a large mouthful of writhing worms, are more likely to self-identify as conservative and, especially, to oppose gay marriage than are individuals with more muted physiological responses to the same images. This relationship holds even when controlling for the degree to which respondents believe themselves to be disgust sensitive and suggests that people’s physiological predispositions help to shape their political orientations
    corecore