162 research outputs found

    Service oriented interactive media (SOIM) engines enabled by optimized resource sharing

    Get PDF
    In the same way as cloud computing, Software as a Service (SaaS) and Content Centric Networking (CCN) triggered a new class of software architectures fundamentally different from traditional desktop software, service oriented networking (SON) suggests a new class of media engine technologies, which we call Service Oriented Interactive Media (SOIM) engines. This includes a new approach for game engines and more generally interactive media engines for entertainment, training, educational and dashboard applications. Porting traditional game engines and interactive media engines to the cloud without fundamentally changing the architecture, as done frequently, can enable already various advantages of cloud computing for such kinds of applications, for example simple and transparent upgrading of content and unified user experience on all end-user devices. This paper discusses a new architecture for game engines and interactive media engines fundamentally designed for cloud and SON. Main advantages of SOIM engines are significantly higher resource efficiency, leading to a fraction of cloud hosting costs. SOIM engines achieve these benefits by multilayered data sharing, efficiently handling many input and output channels for video, audio, and 3D world synchronization, and smart user session and session slot management. Architecture and results of a prototype implementation of a SOIM engine are discussed

    Evaluator services for optimised service placement in distributed heterogeneous cloud infrastructures

    Get PDF
    Optimal placement of demanding real-time interactive applications in a distributed heterogeneous cloud very quickly results in a complex tradeoff between the application constraints and resource capabilities. This requires very detailed information of the various requirements and capabilities of the applications and available resources. In this paper, we present a mathematical model for the service optimization problem and study the concept of evaluator services as a flexible and efficient solution for this complex problem. An evaluator service is a service probe that is deployed in particular runtime environments to assess the feasibility and cost-effectiveness of deploying a specific application in such environment. We discuss how this concept can be incorporated in a general framework such as the FUSION architecture and discuss the key benefits and tradeoffs for doing evaluator-based optimal service placement in widely distributed heterogeneous cloud environments

    Service oriented networking

    Get PDF
    This paper introduces a new paradigm for service oriented networking being developed in the FUSION project(1). Despite recent proposals in the area of information centric networking, a similar treatment of services - where networked software functions, rather than content, are dynamically deployed, replicated and invoked - has received little attention by the network research community to date. Our approach provides the mechanisms required to deploy a replicated service instance in the network and to route client requests to the closest instance in an efficient manner. We address the main issues that such a paradigm raises including load balancing, resource registration, domain monitoring and inter-domain orchestration. We also present preliminary evaluation results of current work

    Kidins220/ARMS binds to the B cell antigen receptor and regulates B cell development and activation

    Get PDF
    B cell antigen receptor (BCR) signaling is critical for B cell development and activation. Using mass spectrometry, we identified a protein kinase D\u2013interacting substrate of 220 kD (Kidins220)/ankyrin repeat\u2013rich membrane-spanning protein (ARMS) as a novel interaction partner of resting and stimulated BCR. Upon BCR stimulation, the interaction increases in a Src kinase\u2013independent manner. By knocking down Kidins220 in a B cell line and generating a conditional B cell\u2013specific Kidins220 knockout (B-KO) mouse strain, we show that Kidins220 couples the BCR to PLC\u3b32, Ca2+, and extracellular signal-regulated kinase (Erk) signaling. Consequently, BCR-mediated B cell activation was reduced in vitro and in vivo upon Kidins220 deletion. Furthermore, B cell development was impaired at stages where pre-BCR or BCR signaling is required. Most strikingly, \u3bb light chain\u2013positive B cells were reduced sixfold in the B-KO mice, genetically placing Kidins220 in the PLC\u3b32 pathway. Thus, our data indicate that Kidins220 positively regulates pre-BCR and BCR functionin

    Two-dimensional PIC simulations of ion-beam instabilities in Supernova-driven plasma flows

    Full text link
    Supernova remnant (SNR) blast shells can reach the flow speed vs=0.1cv_s = 0.1 c and shocks form at its front. Instabilities driven by shock-reflected ion beams heat the plasma in the foreshock, which may inject particles into diffusive acceleration. The ion beams can have the speed vbvsv_b \approx v_s. For vbvsv_b \ll v_s the Buneman or upper-hybrid instabilities dominate, while for vbvsv_b \gg v_s the filamentation and mixed modes grow faster. Here the relevant waves for vbvsv_b \approx v_s are examined and how they interact nonlinearly with the particles. The collision of two plasma clouds at the speed vsv_s is modelled with particle-in-cell (PIC) simulations, which convect with them magnetic fields oriented perpendicular to their flow velocity vector. One simulation models equally dense clouds and the other one uses a density ratio of 2. Both simulations show upper-hybrid waves that are planar over large spatial intervals and that accelerate electrons to \sim 10 keV. The symmetric collision yields only short oscillatory wave pulses, while the asymmetric collision also produces large-scale electric fields, probably through a magnetic pressure gradient. The large-scale fields destroy the electron phase space holes and they accelerate the ions, which facilitates the formation of a precursor shock.Comment: 15 pages, 11 figures, accepted for publication in Plasma Physics and Controlled Fusio

    Sex ratio varies with egg investment in the red-necked phalarope (Phalaropus lobatus)

    Get PDF
    Abstract Fisher's sex ratio theory predicts that on average parents should allocate resources equally to the production of males and females. However, when the cost/benefit ratio for producing males versus females differs, the theory predicts that parents may bias production, typically through underproduction of the sex with greater variation in fitness. We tested theoretical predictions in the red-necked phalarope, a polyandrous shorebird with sex-role reversal. Since females are larger and therefore potentially more expensive to produce and may have greater variation in reproductive success, we predicted from Fisher's hypothesis a male bias in population embryonic sex ratio, and from sex allocation theory, female biases in the clutches of females allocating more resources to reproduction. We measured eggs and chicks and sexed 535 offspring from 163 clutches laid over 6 years at two sites in Alaska. The embryonic sex ratio of 51.1 M:48.9 F did not vary from parity. Clutch sex ratio (% male) was positively correlated with clutch mean egg size, opposite to our prediction. Within clutches, however, egg size did not differ by sex. Male phalarope fitness may be more variable than previously thought, and/or differential investment in eggs may affect the within-sex fitness of males more than females. Eggs producing males were less dense than those producing females, possibly indicating they contained more yolk relative to albumen. Albumen contributes to chick structural size, while yolk supports survivorship after hatch. Sex-specific chick growth strategies may affect egg size and allocation patterns by female phalaropes and other birds

    Observation and characterization of laser-driven Phase Space Electron Holes

    Get PDF
    The direct observation and full characterization of a Phase Space Electron Hole (EH) generated by laser-matter interaction is presented. This structure has been detected via proton radiography during the interaction between an intense laser pulse (t=1ns temporally flat-top, I= 10^14W/cm^2) and a gold 26 micron thick hohlraum. This technique has allowed us the simultaneous detection of propagation velocity, potential and electron density spatial profile across the EH with fine spatial and temporal resolution providing an unprecedentedly detailed experimental characterization

    Modulational Instability in Equations of KdV Type

    Full text link
    It is a matter of experience that nonlinear waves in dispersive media, propagating primarily in one direction, may appear periodic in small space and time scales, but their characteristics --- amplitude, phase, wave number, etc. --- slowly vary in large space and time scales. In the 1970's, Whitham developed an asymptotic (WKB) method to study the effects of small "modulations" on nonlinear periodic wave trains. Since then, there has been a great deal of work aiming at rigorously justifying the predictions from Whitham's formal theory. We discuss recent advances in the mathematical understanding of the dynamics, in particular, the instability of slowly modulated wave trains for nonlinear dispersive equations of KdV type.Comment: 40 pages. To appear in upcoming title in Lecture Notes in Physic
    corecore