54 research outputs found
A two-dimensional adaptive-wall test section with ventilated walls in the Ames 2- by 2-foot transonic wind tunnel
The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted
Pressure Sensitive Paint Applied to Flexible Models Project
One gap in current pressure-measurement technology is a high-spatial-resolution method for accurately measuring pressures on spatially and temporally varying wind-tunnel models such as Inflatable Aerodynamic Decelerators (IADs), parachutes, and sails. Conventional pressure taps only provide sparse measurements at discrete points and are difficult to integrate with the model structure without altering structural properties. Pressure Sensitive Paint (PSP) provides pressure measurements with high spatial resolution, but its use has been limited to rigid or semi-rigid models. Extending the use of PSP from rigid surfaces to flexible surfaces would allow direct, high-spatial-resolution measurements of the unsteady surface pressure distribution. Once developed, this new capability will be combined with existing stereo photogrammetry methods to simultaneously measure the shape of a dynamically deforming model in a wind tunnel. Presented here are the results and methodology for using PSP on flexible surfaces
Simultaneous Boundary-Layer Transition, Tip Vortex, and Blade Deformation Measurements of a Rotor in Hover
This paper describes simultaneous optical measurements of a sub-scale helicopter rotor in the U.S. Army Hover Chamber at NASA Ames Research Center. The measurements included thermal imaging of the rotor blades to detect boundary layer transition; retro-reflective background-oriented schlieren (RBOS) to visualize vortices; and stereo photogrammetry to measure displacements of the rotor blades, to compute spatial coordinates of the vortices from the RBOS data, and to map the thermal imaging data to a three-dimensional surface grid. The test also included an exploratory effort to measure flow near the rotor tip by tomographic particle image velocimetry (tomo PIV)an effort that yielded valuable experience but little data. The thermal imaging was accomplished using an image-derotation method that allowed long integration times without image blur. By mapping the thermal image data to a surface grid it was possible to accurately locate transition in spatial coordinates along the length of the rotor blade
Wind Tunnel Measurements of the Wake of a Full-Scale UH-60A Rotor in Forward Flight
A full-scale UH-60A rotor was tested in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel in May 2010. The test was designed to acquire a suite of measurements to validate state-of-the-art modeling tools. Measurements include blade airloads (from a single pressure-instrumented blade), blade structural loads (strain gages), rotor performance (rotor balance and torque measurements), blade deformation (stereo-photogrammetry), and rotor wake measurements (Particle Image Velocimetry (PIV) and Retro-reflective Backward Oriented Schlieren (RBOS)). During the test, PIV measurements of flow field velocities were acquired in a stationary cross-flow plane located on the advancing side of the rotor disk at approximately 90 deg rotor azimuth. At each test condition, blade position relative to the measurement plane was varied. The region of interest (ROI) was 4-ft high by 14-ft wide and covered the outer half of the blade radius. Although PIV measurements were acquired in only one plane, much information can be gleaned by studying the rotor wake trajectory in this plane, especially when such measurements are augmented by blade airloads and RBOS data. This paper will provide a comparison between PIV and RBOS measurements of tip vortex position and vortex filament orientation for multiple rotor test conditions. Blade displacement measurements over the complete rotor disk will also be presented documenting blade-to-blade differences in tip-path-plane and providing additional information for correlation with PIV and RBOS measurements of tip vortex location. In addition, PIV measurements of tip vortex core diameter and strength will be presented. Vortex strength will be compared with measurements of maximum bound circulation on the rotor blade determined from pressure distributions obtained from 235 pressure sensors distributed over 9 radial stations
Photogrammetric recession measurements of an ablating surface
An instrument and method for measuring the time history of recession of an ablating surface of a test article during testing in a high enthalpy thermal test facility, such as an arcjet. The method advances prior art by providing time-history data over the full ablating surface without targets and without any modifications to the test article. The method is non-intrusive, simple to implement, requires no external light source, and does not interfere with normal operations of the arcjet facility
Background Oriented Schlieren (BOS) of a Supersonic Aircraft In Flight
This article describes the development and use of Background Oriented Schlieren on a full-scale supersonic jet in flight. A series of flight tests was performed in October, 2014 and February 2015 using the flora of the desert floor in the Supersonic Flight Corridor on the Edwards Air Force Base as a background. Flight planning was designed based on the camera resolution, the mean size and color of the predominant plants, and the navigation and coordination of two aircraft. Software used to process the image data was improved with additional utilities. The planning proved to be effective and the vast majority of the passes of the target aircraft were successfully recorded. Results were obtained that are the most detailed schlieren imagery of an aircraft in flight to date
Measurements of Parachute Dynamics in the World's Largest Wind Tunnel by Stereo Photogrammetry
Between 2012 and 2017, parachutes for four NASA Projects were tested in the 80- by 120-Ft test section of the National Full-Scale Aerodynamic Complex (NFAC) at NASA Ames Research Center. These projects were: (1) Low-Density Supersonic Decelerator (LDSD); (2) Capsule Parachute Assembly System (CPAS, for Orion); (3) Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight, a Mars mission); and (4) Mars 2020. In all tests stereo photogrammetry was used to measure time-dependent positions of features on the canopies. For the LDSD and CPAS tests, where the purpose was to study the trade-off between stability and drag of different parachute designs, the pendulum motion of the canopies about the riser attachment point was measured by calibrated cameras in the diffuser. The CPAS test also included static measurements where the inflated parachutes were pulled to the side by a system of tethers. The Insight tests were structural qualification tests where each canopy was packed in a bag and launched from a mortar. Cameras in the diffuser measured the trajectory of the bag and the stripping of the bag from the canopy. The Mars 2020 test was a workmanship verification test where the canopies were either launched from a mortar or deployed from a sleeve stretched along the tunnel axis. The deployments were recorded from many directions by thirteen high-speed cameras distributed in the diffuser and test section. Photogrammetry was not planned; however, after a tunnel-related accident ended the test prematurely, photogrammetric measurements were bootstrapped from the images to support the accident investigations. This paper describes how the photogrammetry measurements were made in each test and presents typical results
Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel
The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1 at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg
Simultaneous, Unsteady PIV and Photogrammetry Measurements of a Tension-Cone Decelerator in Subsonic Flow
This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program
Stereo Photogrammetry Measurements of the Position and Attitude of a Nozzle-Plume/Shock-Wave Interaction Model in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel
Stereo photogrammetry was used to measure the position and attitude of a slender body of revolution during nozzle-plume/shock-wave interaction tests in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel. The model support system was designed to allow the model to be placed at many locations in the test section relative to a pressure rail on one sidewall. It included a streamwise traverse as well as a thin blade that offset the model axis from the sting axis. With these features the support system was more flexible than usual resulting in higher-than-usual uncertainty in the position and attitude of the model. Also contributing to this uncertainty were the absence of a balance, so corrections for sting deflections could not be applied, and the wings-vertical orientation of the model, which precluded using a gravity-based accelerometer to measure pitch angle. Therefore, stereo photogrammetry was chosen to provide independent measures of the model position and orientation. This paper describes the photogrammetry system and presents selected results from the test
- …