2,819 research outputs found
A Relational Database Model for Managing Accelerator Control System Software At Jefferson Lab
The operations software group at the Thomas Jefferson National Accelerator
Facility faces a number of challenges common to facilities managing a large
body of software developed in-house. Developers include members of the software
group, operators, hardware engineers and accelerator physicists. One management
problem has been ensuring that all software has an identified maintainer who is
still working at the lab. In some cases, locating source code for 'orphaned'
software has also proven to be difficult. Other challenges include enforcing
minimal standards for versioning and documentation, segregating test software
from operational software, encouraging better code reuse, consolidating
input/output file storage and management, and tracking software dependencies.
This paper will describe a relational database model for tracking the
information necessary to solve the problems above. The instantiation of that
database model provides the foundation for various productivity- and
consistency- enhancing tools for automated (or at least assisted) building,
versioning, documenting and installation of software.Comment: ICALEPCS, 2001 PSN#WEAP07
Wave-Coupled W-Band LiNbO_3 Mach-Zehnder Modulator
Summary form only given. Mach-Zehnder amplitude modulators have been designed for W-band operation (94 GHz), at a 1.3-μm optical wavelength. These modulators use bow-tie antennas, which are relatively insensitive to DC bias connections made to the ends of the antenna elements. The bow-ties should also give a greater bandwidth than the dipole antennas
Antenna-coupled millimeter-wave LiNbO_3 electro-optic modulator
The phase-velocity mismatch due to material dispersion in traveling-wave LiNbO_3 optical
waveguide modulators may be greatly reduced by breaking the modulation transmission line into short
segments and connecting each segment to its own surface antenna. The array of antennas is then
illuminated by the modulation signal at an angle which produces a delay from antenna to antenna to
match the optical waveguide's delay
60 GHz and 94 GHz antenna-coupled LiNbO_3 electrooptic modulators
Antenna-coupled LiBbO_3 electrooptic modulators can overcome the material dispersion which would otherwise prevent sensitive high-frequency operation. The authors previously demonstrated the concept with a phase modulator at X-band. They have extended this demonstration to a narrowband 60-GHz phase modulator and broadband amplitude modulator designs at 60 and 94 GHz, respectively
Wave-coupled LiNbO_3 electrooptic modulator for microwave and millimeter-wave modulation
A new technique of phase velocity matching in electrooptic modulators was demonstrated. The results show that the phase velocity mismatch due to material dispersion in traveling-wave LiNbO_3 optical waveguide modulators can be greatly reduced by breaking the modulation transmission line into short segments and connecting each segment to its own surface dipole antenna. The array of antennas is then illuminated by the modulation signal from below at the proper angle to produce a delay from antenna to antenna that matches the optical waveguide's delay. A phase modulator 25 mm in length with five antennas and five transmission line segments was operated from 4.6 to 13 GHz with a maximum phase modulation sensitivity of over 100°/W^(1/2)
Novel Millimeter-Wave Electro-optic Modulator
A waveguide LiNbO_3 electro-optic modulator has been demonstrated with a novel wave-coupling technique which greatly reduces phase-velocity mismatch. An 8-12 GHz version produces 48° phase modulation with 126 mW of drive power. A 60 GHz version is being built
Energy dynamics in a simulation of LAPD turbulence
Energy dynamics calculations in a 3D fluid simulation of drift wave
turbulence in the linear Large Plasma Device (LAPD) [W. Gekelman et al., Rev.
Sci. Inst. 62, 2875 (1991)] illuminate processes that drive and dissipate the
turbulence. These calculations reveal that a nonlinear instability dominates
the injection of energy into the turbulence by overtaking the linear drift wave
instability that dominates when fluctuations about the equilibrium are small.
The nonlinear instability drives flute-like () density
fluctuations using free energy from the background density gradient. Through
nonlinear axial wavenumber transfer to fluctuations, the
nonlinear instability accesses the adiabatic response, which provides the
requisite energy transfer channel from density to potential fluctuations as
well as the phase shift that causes instability. The turbulence characteristics
in the simulations agree remarkably well with experiment. When the nonlinear
instability is artificially removed from the system through suppressing
modes, the turbulence develops a coherent frequency spectrum
which is inconsistent with experimental data
- …