19 research outputs found

    Review of foundational concepts and emerging directions in metamaterial research: Design, phenomena, and applications

    Full text link
    In the past two decades, artificial structures known as metamaterials have been found to exhibit extraordinary material properties that enable the unprecedented manipulation of electromagnetic waves, elastic waves, molecules, and particles. Phenomena such as negative refraction, bandgaps, near perfect wave absorption, wave focusing, negative Poissons ratio, negative thermal conductivity, etc., all are possible with these materials. Metamaterials were originally theorized and fabricated in electrodynamics, but research into their applications has expanded into acoustics, thermodynamics, seismology, classical mechanics, and mass transport. In this Research Update we summarize the history, current state of progress, and emerging directions of metamaterials by field, focusing the unifying principles at the foundation of each discipline. We discuss the different designs and mechanisms behind metamaterials as well as the governing equations and effective material parameters for each field. Also, current and potential applications for metamaterials are discussed. Finally, we provide an outlook on future progress in the emerging field of metamaterials.Comment: 22 pages, 3 figures, 1 tabl

    CO2 Utilization and Storage in Shale Gas Reservoirs: Experimental Results and Economic Impacts

    Get PDF
    AbstractNatural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) and associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. In contrast, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production

    Fluorocarbon adsorption in hierarchical porous frameworks

    Get PDF
    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g-1 at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g-1 at P/Poof 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane > chlorodifluoromethane > chlorotrifluoromethane > tetrafluoromethane > methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling

    Quantification of CO2 Mineralization at the Wallula Basalt Pilot Project

    No full text
    In 2013, the Pacific Northwest National Laboratory led a geologic carbon sequestration field demonstration where ∼1000 tonnes of CO2 was injected into several deep Columbia River Basalt zones near Wallula, Washington. Rock core samples extracted from the injection zone two years after CO2 injection revealed nascent carbonate mineralization that was qualitatively consistent with expectations from laboratory experiments and reactive transport modeling. Here, we report on a new detailed analysis of the 2012 pre-injection and 2015 post-injection hydrologic tests that capitalizes on the difference in fluid properties between scCO2 and water to assess changes in near-field, wellbore, and reservoir conditions that are apparent approximately two years following the end of injection. This comparative hydrologic test analysis method provides a new way to quantify the amount of injected CO2 that was mineralized in the field test. Modeling results indicate that approximately 60% of the injected CO2 was sequestered via mineralization within two years, with the resulting carbonates occupying ∼4% of the available reservoir pore space. The method presented here provides a new monitoring tool to assess the fate of CO2 injected into chemically reactive basalt formations but could also be adapted for long-term monitoring and verification within more traditional subsurface carbon storage reservoirs

    Anomalous porosity preservation and preferential accumulation of gas hydrate in the Andaman accretionary wedge, NGHP-01 site 17A

    Get PDF
    In addition to well established properties that control the presence or absence of the hydrate stability zone, such as pressure, temperature, and salinity, additional parameters appear to influence the concentration of gas hydrate in host sediments. The stratigraphic record at Site 17A in the Andaman Sea, eastern Indian Ocean, illustrates the need to better understand the role pore-scale phenomena play in the distribution and presence of marine gas hydrates in a variety of subsurface settings. In this paper we integrate field-generated datasets with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, to document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17A in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. The grain scale relationships between porosity, permeability, and gas hydrate saturation documented at Site 17A likely offer insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings

    Interlayer Cation Polarizability Affects Supercritical Carbon Dioxide Adsorption by Swelling Clays

    No full text
    Several strategies for mitigating the build-up of atmospheric carbon dioxide (CO2) bring wet supercritical CO2 (scCO2) in contact with phyllosilicates such as illites and smectites. While some work has examined the role of the charge-balancing cation and smectite framework features on CO2/smectite interactions, to our knowledge no one has examined how the polarizability of the charge-balancing cation influences these behaviors. In this paper, the scCO2 adsorption properties of Pb2+, Rb+, and NH4+ saturated smectite clays at variable relative humidity are studied by integrating in situ high-pressure X-ray diffraction (XRD), infrared spectroscopic titrations, and magic angle spinning nuclear magnetic resonance (MAS NMR) methods. The results are combined with previously published data for Na+, Cs+, and Ca2+ saturated versions of the same smectites to isolate the roles of the charge-balancing cations and perform two independent tests of the role of charge-balancing cation polarizability in determining the interlayer fluid properties and smectite expansion. Independent correlations developed for (i) San Bernardino hectorite (SHCa-1) and (ii) Wyoming montmorillonite (SWy-2) both show that cation polarizability is important in predicting the interlayer composition (mol% CO2 in the interlayer fluid and CO2/cation ratio in interlayer) and the expansion behavior for smectites in contact with wet and dry scCO2. In particular, this study shows that the charge-balancing cation polarizability is the most important cation-associated parameter in determining the expansion of the trioctahedral smectite, hectorite, when in contact with dry scCO2. While both independent tests show that cation polarizability is an important factor in smectite-scCO2 systems, the correlations for hectorite are different from those determined for montmorillonite. The root of these differences is likely associated with the roles of the smectite framework on adsorption, warranting follow-up studies with a larger number of unique smectite frameworks. Overall, the results show that the polarizability of the charge-balancing cation should be considered when preparing smectite clays (or industrial processes involving smectites) to capture CO2 and in predicting the behavior of caprocks over time

    Dynamic Adsorption of CO<sub>2</sub>/N<sub>2</sub> on Cation-Exchanged Chabazite SSZ-13: A Breakthrough Analysis

    No full text
    Alkali-exchanged SSZ-13 adsorbents were investigated for their applicability in separating N<sub>2</sub> from CO<sub>2</sub> in flue gas streams using a dynamic breakthrough method. In contrast to IAST calculations based on equilibrium isotherms, K<sup>+</sup> exchanged SSZ-13 was found to yield the best N<sub>2</sub> productivity, comparable to Ni-MOF-74, under dynamic conditions where diffusion properties play a significant role. This was attributed to the selective, partial blockage of access to the chabazite cavities, enhancing the separation potential in a 15/85 CO<sub>2</sub>/N<sub>2</sub> binary gas mixture
    corecore