1,612 research outputs found

    Incoherent boundary conditions and metastates

    Get PDF
    In this contribution we discuss the role which incoherent boundary conditions can play in the study of phase transitions. This is a question of particular relevance for the analysis of disordered systems, and in particular of spin glasses. For the moment our mathematical results only apply to ferromagnetic models which have an exact symmetry between low-temperature phases. We give a survey of these results and discuss possibilities to extend them to some situations where many pure states can coexist. An idea of the proofs as well as the reformulation of our results in the language of Newman-Stein metastates are also presented.Comment: Published at http://dx.doi.org/10.1214/074921706000000176 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    PMI: A Delta Psi(m) Independent Pharmacological Regulator of Mitophagy

    Get PDF
    Mitophagy is central to mitochondrial and cellular homeostasis and operates via the PINK1/Parkin pathway targeting mitochondria devoid of membrane potential (ΔΨm) to autophagosomes. Although mitophagy is recognized as a fundamental cellular process, selective pharmacologic modulators of mitophagy are almost nonexistent. We developed a compound that increases the expression and signaling of the autophagic adaptor molecule P62/SQSTM1 and forces mitochondria into autophagy. The compound, P62-mediated mitophagy inducer (PMI), activates mitophagy without recruiting Parkin or collapsing ΔΨm and retains activity in cells devoid of a fully functional PINK1/Parkin pathway. PMI drives mitochondria to a process of quality control without compromising the bio-energetic competence of the whole network while exposing just those organelles to be recycled. Thus, PMI circumvents the toxicity and some of the nonspecific effects associated with the abrupt dissipation of ΔΨm by ionophores routinely used to induce mitophagy and represents a prototype pharmacological tool to investigate the molecular mechanisms of mitophagy

    Incoherent boundary conditions and metastates

    Get PDF

    Ozone concentrations and damage for realistic future European climate and air quality scenarios

    Get PDF
    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2–5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global action to reduce air pollutant emissions is needed to make sure that ozone damage in Europe decreases towards the middle of this century

    Inverse modeling of unsaturated flow using clusters of soil texture and pedotransfer functions

    Get PDF
    Characterization of heterogeneous soil hydraulic parameters of deep vadose zones is often difficult and expensive, making it necessary to rely on other sources of information. Pedotransfer functions (PTFs) based on soil texture data constitute a simple alternative to inverse hydraulic parameter estimation, but their accuracy is often modest. Inverse modeling entails a compromise between detailed description of subsurface heterogeneity and the need to restrict the number of parameters. We propose two methods of parameterizing vadose zone hydraulic properties using a combination of k-means clustering of kriged soil texture data, PTFs, and model inversion. One approach entails homogeneous and the other heterogeneous clusters. Clusters may include subdomains of the computational grid that need not be contiguous in space. The first approach homogenizes within-cluster variability into initial hydraulic parameter estimates that are subsequently optimized by inversion. The second approach maintains heterogeneity through multiplication of each spatially varying initial hydraulic parameter by a scale factor, estimated a posteriori through inversion. This allows preserving heterogeneity without introducing a large number of adjustable parameters. We use each approach to simulate a 95 day infiltration experiment in unsaturated layered sediments at a semiarid site near Phoenix, Arizona, over an area of 50 × 50 m2 down to a depth of 14.5 m. Results show that both clustering approaches improve simulated moisture contents considerably in comparison to those based solely on PTF estimates. Our calibrated models are validated against data from a subsequent 295 day infiltration experiment at the site

    Signature of Obliquity and Eccentricity in Soil Chronosequences

    Get PDF
    Periodic shifts in Earth\u27s orbit alter incoming solar radiation and drive Quaternary climate cycles. However, unambiguous detection of these orbitally driven climatic changes in records of terrestrial sedimentation and pedogenesis remains poorly defined, limiting our understanding of climate change‐landscape feedbacks, impairing our interpretation of terrestrial paleoclimate proxies, and limiting linkages among pedogenesis, sedimentation, and paleoclimatic change. Using a meta‐analysis, we show that Quaternary soil ages preserved in the modern record have periodicities of 41 and 98 kyr, consistent with orbital cycles. Further, soil ages predominantly date to periods of low rates of climatic change following rapid climate shifts associated with glacial‐to‐interglacial transitions. Soil age appears linked to orbital cycles via climate‐modulated sediment deposition, which may largely constrain soil formation to distinct climate periods. These data demonstrate a record of widespread orbital cyclicity in sediment deposition and subsequent pedogenesis, providing a key insight into soil‐landscape evolution and terrestrial paleo‐environment changes
    corecore