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Signatures of Obliquity and Eccentricity
in Soil Chronosequences
Christopher Shepard1,2 , Jon D. Pelletier3 , Marcel G. Schaap1, and Craig Rasmussen1

1Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, USA, 2Department of Plant and
Soil Sciences, University of Kentucky, Lexington, KY, USA, 3Department of Geosciences, University of Arizona, Tucson, AZ,
USA

Abstract Periodic shifts in Earth’s orbit alter incoming solar radiation and drive Quaternary climate cycles.
However, unambiguous detection of these orbitally driven climatic changes in records of terrestrial
sedimentation and pedogenesis remains poorly defined, limiting our understanding of climate
change-landscape feedbacks, impairing our interpretation of terrestrial paleoclimate proxies, and limiting
linkages among pedogenesis, sedimentation, and paleoclimatic change. Using a meta-analysis, we show that
Quaternary soil ages preserved in the modern record have periodicities of 41 and 98 kyr, consistent with
orbital cycles. Further, soil ages predominantly date to periods of low rates of climatic change following rapid
climate shifts associated with glacial-to-interglacial transitions. Soil age appears linked to orbital cycles via
climate-modulated sediment deposition, which may largely constrain soil formation to distinct climate
periods. These data demonstrate a record of widespread orbital cyclicity in sediment deposition and
subsequent pedogenesis, providing a key insight into soil-landscape evolution and terrestrial
paleo-environment changes.

Plain Language Summary Over the past 2.6 million years, the Earth’s climate has cycled at
regular intervals in concert with orbital variations. Climate variations have driven changes in the rates
of erosion and deposition of new sediment, but detection of these orbitally driven climate cycles has
remained elusive in soil systems. We demonstrated that soils were preserved to the present at the same
intervals as known orbital climate cycles using a meta-analysis of soil chronosequences. We further tied
dominant periods of soil formation to periods of relatively low rates of past climate change or periods of
relatively stable, unchanging climate that enable soil formation. Our results provide a better
understanding of how climate change impacts landscapes, which could greatly enhance our
understanding of the impact of future climate change on soil resources and new insights into past
environmental changes.

1. Introduction

The Quaternary climate system is controlled by a complex set of interactions among orbital forcings, oceanic
circulation, and the terrestrial surface. Orbital climate control has been primarily documented in loess
deposits (Ding et al., 1994), marine systems (Lisiecki & Raymo, 2005), and glacial systems (Abe-Ouchi et al.,
2013; Jouzel et al., 2007; Lüthi et al., 2008). Quaternary climate variability was driven, in part, by periodicities
in obliquity, precession, and eccentricity altering the amount of incoming solar radiation (Berger, 1988;
Berger & Loutre, 1991; Imbrie & Imbrie, 1980) and the isostatic response of the lithosphere on the ice-albedo
feedback (Abe-Ouchi et al., 2013). These records demonstrate the periodic dynamics of the Quaternary
climate system and have hinted at the mechanisms controlling Quaternary climate variability. Apart from
changes in incoming solar radiation, redistribution of heat and moisture from the poles toward the tropics
via atmospheric and oceanic circulation patterns likely influences the amplitude and magnitude of past
climate cycles (Jouzel et al., 2007; Lüthi et al., 2008) and likely influenced the transition from a Quaternary
climate system dominated by the 41-kyr period to one dominated by the 100-kyr period at approximately
800 ka (Lisiecki, 2010). Further, Antarctic and global deuterium and carbon dioxide records (EPICA Dome C
proxies) exhibit a tight coupling between global carbon dioxide concentrations and temperature throughout
the Quaternary, with global temperatures slightly lagging carbon dioxide increases (Shakun et al., 2012).
Existing paleoclimate records have provided significant advancements in understanding the Quaternary
climate system, particularly with regard to marine and glacial systems, but extending this understanding
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to terrestrial and pedogenic systems has been limited by the availability of relevant proxies (Pavich &
Chadwick, 2004).

Soil formation and the climate system are tightly coupled (Ciais et al., 2013; Jenny, 1941) through CO2 con-
sumption in chemical weathering (Chadwick et al., 1994) and accumulation and stabilization of organic
and inorganic forms of carbon (Harden et al., 1992; Schlesinger, 1982; Torn et al., 1997). Climate also modu-
lates rates of sediment production and deposition, and soil-landscape evolution (Chadwick et al., 2013; White
& Blum, 1995). Cooling and increased variability in the Quaternary climate system contributed to increased
rates of erosion (Herman et al., 2013; Menounos et al., 2017; Zhang et al., 2001) with landscapes adjusting
to changes in temperature, precipitation, and vegetation regimes (Langbein & Schumm, 1958; Menounos
et al., 2017). These climatic changes drove large pulses of sediment redistribution from uplands to lowlands
(Anders et al., 2005; Antinao et al., 2016; Bull & Schick, 1979; Owen et al., 2014) and eolian redistribution of
sediments in periglacial areas (Ballantyne, 2002).

To date, little evidence of orbital cycles has been identified in either the direct soil-climate interaction
through soil formation or its indirect form through deposition of soil parent material. One of the key obstacles
to using soils as a proxy for orbitally driven climate change is the interaction between time and climate that
influences soil property evolution (Pavich & Chadwick, 2004). Soil chronosequences record the approximate
timing of initial soil formation from deposited parent materials (i.e., deposited sediment), providing a poten-
tial proxy of Quaternary climate cycling and sediment deposition. In the following, we demonstrate that a sui-
tably broad meta-analysis of previously described soil chronosequence data sets reveals similar periodicities
in soil preservation, climate, and orbital forcing. We hypothesized that soil age represents a terrestrial proxy
for orbitally driven climate change and is indicative of the deposition of soil parent material relative to past
climate cycles.

2. Methods

For the meta-analysis, we identified 41 distinct chronosequences and a total of 399 unique soil profiles that
spanned a global array of modern climate systems, ecosystems, parent materials, and geomorphic landforms
(Shepard et al., 2017; Table S1 and Figure S1). Eighty-six percent of the soils were located in depositional
regimes, with the remaining 14% located in volcanic/tectonic regimes. Because tropical and southern hemi-
sphere soils are underrepresented in the literature, most (84%) of the soils were from northern temperate lati-
tudes (30°–60°N), which likely weights the presented results more heavily toward the paleoenvironmental
changes in the northern hemisphere. Additionally, the chronosequence meta-analysis may suffer from bias
due to selective sampling, and selective publication of available data. The most prevalent age dating
methods included radiocarbon, landscape position, potassium-argon dating, and dendrochronology
(Table S1). All presented analyses were carried out using the statistical software R (v. 3.1.1, www.r-project.org).

The soil ages ranged from 0.01 to 4,350 ka, with the vast majority younger than 1,000 ka (>90%; Figure 1a).
Soils continually form in newly deposited sediment, with some proportion subsequently destroyed by ero-
sive processes, such that the soil chronosequence database provides an approximation of the net number
of soils preserved to the present. The cumulative soil age distribution can be represented with a cumulative
exponential distribution (rate, λ = 6.25/kyr; Figure 1b), thus providing a probabilistic estimate of Quaternary
soil preservation and an estimated soil half-life of 286 kyr (Griffiths, 1993). The soil half-life, calculated using
the λ value, provides an estimate of the amount of time required for half of Quaternary soils to be removed
from the Earth’s surface.

2.1. Soil Age Time Series

To determine periodicity in soil age, we calculated a soil time series from the number of observed soils from
the available chronosequence database (Shepard et al., 2017). Using a 10-kyr window, we calculated the tem-
poral density of the number of soils preserved in 1-kyr increments from 0 to 2,600 ka. We weighted the num-
ber of observed soils, both 5 kyr older and younger than the target age (i.e., 10-kyr window), according to: 1.0,
0.5, 0.25, 0.125, and 0.0625. For example, if the target year was 20 ka, we calculated the temporal density of
the number of soils from 15 to 25 ka. We summed the weighted number of observed soils within the 10-kyr
window and divided by the size of the window (i.e., 10 kyr), repeating the calculation in 1-kyr increments. We
calculated the temporal density in this manner to account for the uncertainty and lack of precise age
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constraint of soil age within the available chronosequence literature. From the soil age time series, we
calculated a cumulative probability distribution from Last Glacial Maximum (~22 ka, LGM) to ~2,600 ka by
cumulatively adding the soil age time series. We qualitatively fitted a cumulative exponential distribution
to the cumulative soil age distribution.

We used the Lomb-Scargle (LS) periodogram to determine the periodicity in the soil age time series (Lomb,
1976; Scargle, 1982). The LS periodogram of the soil time series was calculated using the R package “lomb”
(Ruf, 2015). We used an oversampling factor of 10, with a significance level of 0.05. We only examined the
timing of Quaternary soil preservation from LGM (22 ka) to ~500 ka, and from LGM to the beginning of the
Pleistocene (~2,600 ka), and periodicities between 10 and 200 kyr. We assumed that younger soils would
not have experienced full climatic or orbital cycles; soils older than 500 ka have a sparse distribution, which
could lead to spurious results. We used the LS periodogram because it provides a significance level and can
handle unevenly sampled data. Significance levels were determined using the function “randlsp,” which
rearranges the data set to determine the probability that random peaks will reach or exceed the peaks of
the original data set. We also calculated the LS periodogram for eccentricity, obliquity, and precession indices
(Berger & Loutre, 1991); EPICA Dome C deuterium temperature (Jouzel et al., 2007) and CO2 concentration
records (Lüthi et al., 2008); and the LR04 Global Stack δ18O record (Lisiecki & Raymo, 2005) to demonstrate
correspondence between the soil age time series and paleoclimate proxy periodograms.

2.2. Paleoclimatic Proxies

We used available δ18O (‰) records derived frommarine carbonate sediment and speleothems as proxies for
the general paleoclimate conditions and potential sediment denudation/production rates (Table S2). We
chose these proxies as they have demonstrated linkages between paleoclimate conditions and orbital

Figure 1. Soil age time series and cumulative distribution. (a) Soil age time series calculated from the number of preserved
soils to the present in the soil chronosequence database (Shepard et al., 2017). (b) Cumulative probability distribution of the
soil age time series fitted to a cumulative exponential distribution (rate, λ = 6.25/kyr) with normalized age.
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forcing. We examined both the δ18O record and the rate of change in the
δ18O values (Δδ18O). The rate of change in the δ18O record (Δδ18O) was cal-
culated as

Δδ18O ‰=kyrð Þ ¼ δ18Oiþ1 � δ18Oi

timeiþ1 � timei
(1)

where δ18Oi represents the δ18O at the current time (timei) and δ18Oi + 1

represents the δ18O at the preceding time (timei + 1) in the record; we used
the Δδ18O as a proxy for climate stability (Benson, 2004). Climate stability
was defined as periods when the Δδ18O was within ±2σ of the average
Δδ18O, whereas climate instability was defined as periods in which
Δδ18O was outside of ±2σ of the average Δδ18O. We assumed that the
δ18O record broadly represents general patterns and shifts in global cli-
mate and temperature but not any specific local climate conditions.

The Δδ18O and δ18O values at the time of initial soil formation were deter-
mined by aligning the age of each soil to its approximate position in the
δ18O records, and the percentage of sites within ±2σ of the average
Δδ18O values was determined. If there was no influence between past
climate change and soil formation, there would be an equal probability
of observing soil ages at any value of Δδ18O, with an expected uniform
distribution. The distributions of soil Δδ18O values were tested against an
expected random uniform distribution using the chi-square goodness of
fit test. We also tested the distribution of soil Δδ18O values against a nor-
mal distribution. For the percentage of soil Δδ18O values within ±2σ of
the average Δδ18O an ordinary bootstrap was used to determine normal
95% confidence intervals. We determined the number of soil ages dating
to either glacial or interglacial marine isotope stages, and used a chi square
test, assuming an equal split in soil ages between glacial and interglacial
stages, to determine the significance of the observed distribution of glacial
and interglacial soil ages.

3. Results and Discussion

Using the LS periodogram analysis on soil ages from 22 to 500 kyr and a
95% confidence level, we can identify peaks at 41 and 98 kyr (Figure 2a),
with the strongest periodicity at 98 kyr (p< 0.0001). Additional peaks were
observed at 27 and 29 kyr (Figure 2a). A periodogram based on an
extended period with soil ages between 22 ka to 2,600 ka yielded qualita-
tively similar results (Figure S2) but with a decreased peak near 100 kyr and
increased peaks near 41 and 50 kyr, consistent with the relatively smaller
100-kyr forcing of the early Pleistocene (Lisiecki, 2010). Observed soil age
periodicities aligned with observed eccentricity and obliquity but did not
exhibit a compelling signature of precession (23 kyr; Figure 2b; Berger &

Loutre, 1991). The soil age periodicities near 41 and 98 kyr align with periodicities in the EPICA Dome C deu-
terium temperature (Figure 2c; Jouzel et al., 2007) and CO2 concentration records (Figure 2d; Lüthi et al., 2008)
and the LR04 Global Stack δ18O proxy (Figure 2e, Lisiecki & Raymo, 2005). In addition, the soil age periodicities
at 27 and 29 kyr align with peaks in the deuterium and CO2 record but not with LR04 δ18O record. These
results demonstrate that there is a correspondence in periodicities among orbital cycles, global climate
cycles, and soil formation and preservation in depositional regimes throughout the Pleistocene.

We compared the timing of potential initial soil formation to rates of change in the available paleoclimate
proxies to better understand the conditions under which the general paleoclimate state may promote the
observed periodicities in the soil age time series. We found the rate of past climate change corresponded

Figure 2. Lomb-Scargle periodograms of soil age time series and orbital and
paleoclimate records. (a) Periodogram of the soil age time series of the
number of preserved soil to the present from 500 to 22 ka, showing peri-
odicities in soil preservation at 98 and 41 kyr. (b) Peridogram of eccentricity
(black), obliquity (red), and precession index (blue) (Berger & Loutre, 1991).
(c) Periodogram of EPICA Dome C deuterium temperature record (Jouzel
et al., 2007). (d) Periodogram of EPICA Dome C CO2 concentration record
(Lüthi et al., 2008). (e) Periodogram for the LR04 Global Stack δ18O record
(Lisiecki & Raymo, 2005). The vertical bars indicate orbital precession (23 kyr),
obliquity (41 kyr), and eccentricity (100 kyr) cycles; the red dashed lines
represent p-value equal to 0.05.
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with the initiation of soil formation and parent material deposition, with
soil ages largely dating to periods of low relative climate change
immediately following large climate shifts. Depending on the paleoclimate
record, 87–98% of pre-Last Glacial Maximum (>22 ka, pre-LGM) soils
formed at a time when the rate of change in δ18O (Δδ18O; equation (1))
was within ±2σ of the average Δδ18O across the included paleoclimate
proxies (Figure 3a and Table S2). Across all records, the distribution of
Δδ18O values at time of initial soil formation was statistically different from
either expected uniform or normal distributions using a chi-square
goodness of fit test (Table S2). Based on the LR04 stack marine isotope
stages (Lisiecki & Raymo, 2005), almost equal time was observed between
cooling and warming climates during the Pleistocene, with 1,294 kyr
characterized by a cooling climate, indicative of “glacial” marine isotope
stages (49.8%), and 1,306 kyr characterized by a warming climate,
indicative of “interglacial” marine isotope stages (50.2%). In comparison,
63% of pre-LGM soil ages corresponded with interglacial climate periods,
compared to 37% that occurred during glacial climate periods (chi-square
test, p < 0.001; Figure 3b); of the soils dating to glacial periods, 35% were
formed by tectonic/volcanic processes, with the remainder of soil ages
occurring during or just preceding glacial-to-interglacial transitions
(Figure S3).

The connection among orbital cycles, global climate change, and soil age
distribution is likely driven by climate change effects on sediment
redistribution and landscape stability. Sediment pulses are often driven
by climate change (Anders et al., 2005; Antinao et al., 2016; Bull & Schick,
1979), such that periods of rapidly changing climate leads to increased
erosion and sediment deposition. Soils preserved to the present,
representing the net result of soils forming from these sediment pulses
and soils removed via erosion, would thus propagate this climate signal
into their age structure. A similar link was previously shown in stratigraphic
records (Abdul Aziz et al., 2008; Ding et al., 1994), but to our knowledge has
not been demonstrated in extant surface soils. As similar to other
terrestrial climate records, the periodicity in the soil age time series does
not exactly match Milankovitch orbital climate cycles (Pavich &

Chadwick, 2004). This may be due to nonlinear responses in vegetation communities, precipitation regime
change, glacial retreat, sea-level rise, and sediment production (Bard et al., 1996; Davis & Shaw, 2001; Ding
et al., 1994).

Soils were preserved at orbital periodicities, predominantly date to periods of relatively low rates of climate
change, and exhibited an exponential age distribution reflecting a balance of soil formation and erosion. The
orbital periodicity in soil age clearly reflects interactions among global climate dynamics, erosion rates, and
soil formation processes, representing a proxy for orbitally driven climate change. Sediment pulses triggered
by punctuated periods of rapid climate change during orbitally driven glacial-to-interglacial transitions
(Abe-Ouchi et al., 2013) likely drove increased sediment deposition (Zhang et al., 2001). Rapidly changing
climate conditions of glacial-interglacial transitions likely do not allow significant soil formation to occur.
The deposited sediment eventually served as the parent material for many soils (Anders et al., 2005) with soil
formation preferentially occurring during the relatively more stable climate of interglacial periods, tying soil
ages to orbital climate cycles. Further, interactions among warmer interglacial periods, global increase in
vegetation, and deposited sediment may have facilitated more stabilized surfaces for soils to form on.
Additionally, changes in drainage patterns and direction of sedimentation may influence soil preservation
and the propagation of the orbital climate signal in the soil ages (Foreman & Straub, 2017). Soil formation
in deposited sediment and deglaciated terrestrial areas draws down CO2 from the atmosphere through
organic carbon stabilization (Harden et al., 1992; Torn et al., 1997), chemical weathering (Chadwick et al.,
1994), and pedogenic carbonate accumulation (Schlesinger, 1982), with the greatest rates of carbon

Figure 3. Time of soil formation related to the LR04 Stack δ18O record
(Lisiecki & Raymo, 2005). Soil ages preferentially grouped around relatively
stable interglacial stages. The colored vertical lines represent the age of each
soil in the chronosequence database (Shepard et al., 2017) categorized into
order of magnitude categories, from 102 to 105 years; the dark gray bars
represent glacial isotope stages, and the lighter gray bars represent
interglacial isotope stages. (a) Rate of change of δ18O record from 0 to 500 ka
(Δδ18O); the black horizontal line represents the mean rate, the blue
horizontal line represents ±1σ of Δδ18O, and the red horizontal line
represents ±2σ of Δδ18O. (b) LR04 Stack δ18O record from 0 to 500 ka.
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stabilization and storage occurring between 104 and 105 years (Torn et al., 1997), equivalent with the time
scale of Quaternary climate cycles. The CO2 consumed in soil formation processes, following sediment
deposition after glacial-interglacial transitions, may in part facilitate the return to full glacial conditions by
capturing atmospheric CO2, in concert with orbital forcing and other climate feedbacks (Brovkin et al.,
2012; Lüthi et al., 2008). The regular periodicities of soil ages coincident with orbital cycles provide a global
explanation for the regular periods of observed soil formation (Morrison, 1964), and this work represents
one of the first orbital interpretations of terrestrial paleoclimate records.
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