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Key points: 1 

• Two new ways to parameterize vadose zone hydraulic properties based on soil texture are proposed 2 

and analyzed. 3 

• One of these preserves heterogeneity with only a few adjustable parameters. 4 

• The two approaches are compared through application to deep vadose zone experimental data. 5 
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Abstract 6 

Characterization of heterogeneous soil hydraulic parameters of deep vadose zones is often difficult 7 

and expensive, making it necessary to rely on other sources of information.  Pedotransfer functions 8 

(PTFs) based on soil texture data constitute a simple alternative to inverse hydraulic parameter 9 

estimation, but their accuracy is often modest. Inverse modeling entails a compromise between detailed 10 

description of subsurface heterogeneity and the need to restrict the number of parameters.  We 11 

propose two methods of parameterizing vadose zone hydraulic properties using a combination of k-12 

means clustering of kriged soil texture data, PTFs and model inversion.  One approach entails 13 

homogeneous and the other heterogeneous clusters.  Clusters may include subdomains of the 14 

computational grid that need not be contiguous in space.  The first approach homogenizes within-15 

cluster variability into initial hydraulic parameter estimates that are subsequently optimized by 16 

inversion.  The second approach maintains heterogeneity through multiplication of each spatially 17 

varying initial hydraulic parameter by a scale factor, estimated a posteriori through inversion.  This 18 

allows preserving heterogeneity without introducing a large number of adjustable parameters.  We 19 

use each approach to simulate a 95-day infiltration experiment in unsaturated layered sediments at a 20 

semiarid site near Phoenix, Arizona, over an area of 50 × 50 m2 down to a depth of 14.5 m.  Results 21 

show that both clustering approaches improve simulated moisture contents considerably in comparison 22 

to those based solely on PTF estimates.  Our calibrated models are validated against data from a 23 

subsequent 295-day infiltration experiment at the site. 24 

 25 
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1. Introduction 26 

Modeling of vadose zone flow and transport processes requires characterization of subsurface 27 

architecture and hydraulic properties.  Information about lithotype distribution can often be obtained 28 

from well logs, ground penetrating radar (GPR) [Kowalsky et al., 2005], electrical resistance 29 

tomography (ERT) [Yeh, 2002; Liu and Yeh, 2004] or seismic tomography [Nolet, 1987; Tromp et al., 30 

2005].  In deep vadose zones, hydraulic parameters are difficult if not impossible to measure in situ.  31 

Acquiring undisturbed samples and determining their hydraulic properties in the laboratory is likewise 32 

difficult and expensive.  A common alternative is to characterize hydraulic properties indirectly, on 33 

the basis of soil composition and/or flow data, through pedotransfer functions (PTFs) and/or inverse 34 

modeling. 35 

PTFs allow the estimation of soil hydraulic properties using empirical correlations between 36 

hydraulic characteristics, soil texture and quantities such as soil bulk density.  Soil texture and bulk 37 

density are generally easier and less expensive to assess than hydraulic properties [e.g., Rawls et al., 38 

1982; Pachepsky et al., 2006].  The combination of a PTF with high-density sampling and/or 39 

geospatial modeling of soil texture and bulk density should, in principle, allow one to resolve 40 

subsurface hydraulic properties in detail.  The accuracy of PTFs is, however, often modest when 41 

applied to data collected independently of those employed for PTF calibration [Schaap and Leij, 1998].  42 

Calibration of PTFs against site-specific data brings about improvement [Ye et al., 2007] but also 43 

requires considerable effort and cost.  As shown by Wang et al. [2003] and suggested further by our 44 

study, PTF-derived estimates of hydraulic properties tend to result in systematic errors that can (and 45 
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we believe should) be reduced by calibrating these properties further against observed state variables, 46 

such as moisture content and/or pressure head, via inverse modeling. 47 

Inverse modeling in hydrogeology typically entails the following steps [e.g., Neuman, 1973; 48 

Carrera and Neuman 1986b, 1986c; Neuman, 2003; Franssen et al., 2009]: 1) proposition of a 49 

conceptual model (or a set of alternative conceptual models) of the system under study in terms of 50 

geological/sedimentological structure, mathematical rendition of (mass, energy, momentum) 51 

conservation principles, initial and boundary conditions, as well as forcing terms; 2) parametrization 52 

of the system model with the objective of characterizing (either in a stochastic or deterministic fashion) 53 

spatial variability of critical parameters throughout the domain; and 3) estimation of model parameters 54 

by minimizing a suitable measure of mismatch between observed and simulated state variables (e.g., 55 

moisture content or pressure heads).  In some cases, this measure includes prior information about 56 

model structure and parameters.  The latter is typically embedded in a regularization (or plausibility) 57 

term, which penalizes deviations of estimated parameters from prior values and helps stabilize the 58 

inverse solution [Neuman, 1973; Carrera and Neuman 1986a, 1986b; Vrugt and Bouten 2002].  59 

Inverse methods can be combined with numerically intensive Monte Carlo techniques to cope with 60 

propagation of uncertainty associated with spatial parameter distributions (and/or initial conditions and 61 

forcing terms) to state variables of interest [e.g., Zimmerman et al., 1998; Chen and Zhang, 2006]. 62 

Inverse modeling of unsaturated flow is more challenging than that of saturated flow.  Notably, 63 

functional dependence of soil moisture content and hydraulic conductivity on matric potential leads to 64 

high-dimensionality issues in the parameter space, even under conditions where closed-form 65 
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expressions of these models such as the Brooks-Corey-Burdine [Burdine, 1953; Brooks and Corey, 66 

1964] or van Genuchten-Mualem formulations are used [Mualem 1976; van Genuchten, 1980].  67 

Reviews of inverse methods in the context of vadose zone hydrology are found in Hopmans and 68 

Simunek [1999], Hopmans et al. [2002], and Vrugt et al. [2008].  Inverse methods based on zonation 69 

(subdivision of the flow domain into uniform subdomains [Emsellem and De Marsily, 1971; Neuman 70 

and Yakowitz, 1979; Wildenschild and Jensen, 1999; Wang et al., 2003; Vrugt et al., 2008]) are used 71 

among practitioners due to their relatively straightforward implementation and its flexibility to 72 

accommodate geological information.  However, the number of zones (and so the resolution of 73 

heterogeneity) is limited by the need to avoid overparameterization. A variation on the zonation method 74 

to resolve subsurface heterogeneity is to use similar media scaling [Miller and Miller, 1956; Vogel et 75 

al., 1991], which relies on the dependence of hydraulic properties on pore size and pore geometry 76 

descriptors.  This allows scaling of hydraulic water retention and unsaturated hydraulic conductivity 77 

functions of multiple soils to unique reference functions [e.g. Tuli et al., 2001; Das et al., 2005; Nasta 78 

et al., 2013].  Zhang et al. [2004] used a Combined Parameter Scaling and Inversion Technique 79 

(CPSIT) to estimate the hydraulic properties of Equivalent Hydraulic Media (EHMs).  Their method 80 

requires that soil hydraulic parameters at the local scale be determined using the same method as that 81 

used for the experimental site and at the same spatial scale, i.e., core size.  In their approach, ratios of 82 

hydraulic properties in different EHMs relative to hydraulic properties in reference EHMs remain fixed 83 

during inversion.  Therefore, field scale hydraulic parameters of reference EHMs can be estimated 84 

during inversion from local scale values.  Zhang et al. [2004] recognized this to be a limitation in that 85 
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any local-scale parameter estimation error transfers to the field scale. 86 

Inverse methods combined with geostatistical methods constitute an alternative approach to 87 

estimate soil hydraulic parameters.  The Pilot Point Method (PPM), introduced by de Marsily [1984], 88 

is one such approach and consists of calibrating an initial kriged parameter field, generated from the 89 

measured values of hydraulic parameters and a set of additional parameter values (which are unknown 90 

prior to calibration) at selected unmeasured locations in the simulation domain, called “pilot points”.  91 

The location of pilot points can also be incorporated into the inverse problem to find the optimal 92 

position using a couple of adjoint sensitivity analysis and kriging [LaVenue and Pickens, 1992; 93 

RamaRao et al., 1995; Franssen et al., 2009].  The PPM method has mostly been applied to saturated 94 

problems and has found little application in vadose zone systems.  Kowalsky et al. [2005] used the 95 

PPM to derive the distribution of permeability using GPR and hydrological measurements collected 96 

during a transient flow experiment.  Morales-Casique et al. [2010] calibrated log permeability and 97 

porosity at selected pilot points against observed pressures in two pneumatic injection tests of 98 

unsaturated fractured tuff in Arizona. 99 

In this study, we introduce two ways of parameterizing deep vadose zone hydraulic properties based 100 

on k-means clustering of kriged soil textural data, a pedotransfer function (PTF) and numerical 101 

inversion of a vadose zone flow model.  In contrast to traditional zonation often employed in vadose 102 

zone inverse modeling, a cluster in our model may (and generally does) consist of noncontiguous 103 

subdomains.  The initial hydraulic parameters at each grid point in a cluster are estimated with a PTF.  104 

Our approach admits that these initial PTF estimates entail systematic errors [Schaap and Leij, 1998] 105 
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which are not known a priori [Romano, 2004; Chirico et al., 2007; Assouline and Or, 2013].  The 106 

purpose of our inverse analysis is precisely to minimize these, and ancillary random, errors in parameter 107 

estimates. Our approach is predicated on the belief that it is better to rely on reasonably well founded 108 

(if not entirely accurate) PTF-derived initial parameter estimates than on other, less robust alternatives.  109 

In the first homogeneous cluster approach, each hydraulic parameter (or its logarithm) is averaged over 110 

all grid points in a cluster to yield prior hydraulic parameter estimates; posterior estimates (which are 111 

uniform within each cluster but differ between clusters) are then estimated by optimizing the fit 112 

between computed and observed moisture contents.  All prior and posterior parameter estimates 113 

within a cluster are homogeneous.  In the heterogeneous cluster approach, prior hydraulic parameter 114 

estimates vary from one grid point to another.  Posterior estimates in a cluster are expressed as 115 

products of corresponding prior estimates and a cluster-specific scaling factor. Scaling factors of all 116 

parameters in all clusters are then estimated by the same criteria.  Both of our approaches are 117 

evaluated by model quality measures.  We use our approach to simulate a 95-day infiltration 118 

experiment in unsaturated layered sediments at a semiarid site near Phoenix, Arizona, over an area of 119 

50 × 50 m2 down to a depth of 14.5 m. We then validate our calibrated models against data from a 120 

subsequent 295-day infiltration experiment at the site. 121 

 122 

1.1. Description of Site and Infiltration Experiment 123 

The data used in this study were collected at the University of Arizona Maricopa Agricultural 124 

Center (latitude 33.069478 N, longitude 111.973667 W), Arizona, USA, between 1997 and 2004. Four 125 
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deep vadose zone infiltration experiments were conducted at this site to test the effectiveness of several 126 

vadose zone monitoring instruments and modeling techniques.  The site was nominally 60 × 60 m2 in 127 

the horizontal direction and 15 m in the vertical direction and situated in alluvial valley deposits with 128 

a textural composition ranging from gravel to clay.  An impermeable pond liner was used to eliminate 129 

evaporation and rainfall and an inner area of 50 × 50 m2 (Figure 1) was outfitted with 164 irrigation 130 

driplines containing emitters spaced 30 cm apart.  Major instrumentation included nine neutron 131 

thermalization wells with depths down to 14.25 m (numbered 402…445 in Figure 1) and tensiometers 132 

placed one meter south of each well at depths of 3, 5 and 10 m.  A perched groundwater table was 133 

observed at a depth of about 13 m.  Detailed descriptions of the site and instrument calibration are 134 

provided by Young et al. [1999], Wang et al. [2002] and Schaap [2013]. 135 

Here we focus on data from Experiment 3 and 4 used, respectively, for model calibration and 136 

validation.  Experiment 3 started on 17 January 2001 (Day-of-Year 17, hereafter termed as DOY 17) 137 

and ended on 28 January 2002 (corresponding to DOY 393).  An extensive 800 day drainage period 138 

preceded Experiment 3, resulting in a nearly constant soil moisture content profile, as verified by 139 

neutron thermalization measurements on DOY 17.5, 47.5, 67.5, and 108.5.  Drip irrigation (and 140 

associated infiltration) started at noon on 24 April 2001 (DOY 114.5) and ended 28 days later at noon 141 

on 22 May 2001 (DOY 142.5).  With minor interruptions, metered irrigation was applied six times a 142 

day at a mean rate of 27.2 mm/day; about 16 mm of water was applied before DOY114.5 to test the 143 

irrigation system. Tensiometer readings indicated that full saturation conditions did not occur at any of 144 

the monitored locations. 145 



 10

Neutron thermalization was conducted on 42 dates with 0.25 m increments from a depth of 0.25 m 146 

down to 12.5 m; neutron count ratios were converted to soil moisture contents using a texture-147 

dependent calibration model presented in Schaap [2013].  Sparse data at depths greater than 12.5 m 148 

were also available at some wells, but were not used in this study.  Data from well 442 (Figure 1) 149 

were not considered due to evidence of lateral flow from a flood irrigated field immediately to the north 150 

of the site.  Data from well 405 at depths of 5.0 - 10.0 m were likewise not used because of 151 

anomalously dry readings, presumably due to large air pockets around the PVC well casing.  For 152 

model calibration data collected between DOY 67.5 and DOY 163.5 were used, which included 29 153 

dates with 11,020 individual moisture content observations.  There were two observation dates before 154 

the start of irrigation (DOY 114.5), while sampling took place every one to three days during irrigation 155 

and at approximately weekly intervals during subsequent redistribution.  As explained in Section 156 

2.2.1, the relatively sparse data before infiltration caused some problems with obtaining physically 157 

realistic initial moisture contents. 158 

Experiment 4 started on 26 March 2002 (DOY 450) and ended 295 days later on 14 January 2003 159 

(DOY 744). Irrigation started on 26 March 2002 (DOY 450) ended 230 days later on 11 November 160 

2002 (DOY 680). It was followed by a 65-day drainage period that ended on 14 January 2003 (DOY 161 

744).  The site was irrigated for 5 minutes, 12 times a day, at a mean rate of 26.8 mm/day.  Neutron 162 

counts (and, correspondingly, water contents) were measured on 32 dates; 26 dates were measured 163 

during the infiltration period and 6 dates during the drainage period. They were conducted at vertical 164 

increments of 0.25 m from depth 0.25 m down to 12.5 m in 9 boreholes.  Neutron depth coverage was 165 
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less consistent than in Experiment 3 in that measurements were taken preferentially near the infiltration 166 

front, less frequently below it during the infiltration period. Discarding unreliable observations in well 167 

442 due to the same reason as in Experiment 3 left us with a total of 9,297 neutron count values for 168 

validation. 169 

 170 

1.2. Geospatial Analysis of Soil Texture and Bulk Density 171 

No reliable measurements of site’s hydraulic characteristics are available. For this reason, we 172 

estimate these characteristics using PTFs based on a geospatial analysis of texture and bulk density 173 

data.  Wang [2002] performed a three-dimensional geostatistical analysis of 520 texture samples 174 

collected at depths down to 5 m.  Schaap [2013] reanalyzed an extended dataset of 1042 soil texture 175 

and 250 bulk density samples down to a depth of 15 m and identified two principal components (PC1 176 

and PC2) extracted from measured sand, silt, and clay percentages, with PC1 accounting for 92% of 177 

textural triangle variance and PC2 accounting for the remaining 8% of this variance. Residual 178 

variograms were obtained upon subtracting spatially-averaged vertical trends from PC1, PC2 and bulk 179 

density data (see Schaap [2013] for details).  180 

Using the same data as Schaap [2013], Guadagnini et al. [2013] showed that the univariate 181 

distribution of texture is non-Gaussian, rendering texture amenable to representation as a sub-Gaussian 182 

random field, key statistics of which vary with scale.  The same is true for hydraulic parameters 183 

estimated from textural data [Guadagnini et al., 2014] using the pedotransfer function Rosetta of 184 

Schaap et al. [2001].  Based on results obtained by Guadagnini et al. [2013] and [Guadagnini et al., 185 
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2014] we recognize that the current kriging approach (see below) has the potential to produce a bias in 186 

the prior estimates, which can be reduced, but not eliminated [Grondona and Cressie, 1991], through 187 

an iterative approach proposed by Neuman and Jacobson [1984].  As a result, the approach followed 188 

may yield somewhat biased prior hydraulic parameter estimates because kriging of texture and bulk 189 

density provides a smooth estimate of actual spatial variability while sub-Gaussian fields may present 190 

a more accurate description of the prior parameter estimate.  191 

Because the development of conditional simulation and kriging-based estimation of sub-Gaussian 192 

fields of the kind found by Guadagnini et al. [2013, 2014] is still in its infancy [Riva et al., 2015; 193 

Panzeri et al., 2016], we cannot yet simulate conditional sub-Gaussian random fields. Quantifying the 194 

potential bias of the kriging approach is impossible. However, we expect it to impact our prior 195 

parameter estimates to a greater extent than our posterior estimates, which depend strongly on 196 

additional data (in our case, water contents) and are known to be generally less biased.  197 

Our study is thus confined to the kriged three-dimensional (3D) texture and bulk density models 198 

that were obtained by Schaap [2013] for prior soil hydraulic parameter estimates.  The work by 199 

Schaap [2013] relied on anisotropic Gaussian models with horizontal variogram ranges of 13.1, 5.6 200 

and 7.7 m for PC1, PC2 and bulk density, respectively.  Vertical range estimates were 0.28 and 0.85 201 

m for PC1 and PC2, respectively.  No reliable estimate of vertical range was found for bulk density 202 

and we (as did Schaap [2013]) set bulk density below 5 m depth equal to 1.85 g/cm3.  Point kriging 203 

was used to obtain PC1, PC2 for the entire 60 × 60 × 15 m domain as well as bulk density for the 204 

domain above 5 m depth.  We found that a grid with a resolution of 5 × 5 × 0.25 m produced a 205 
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variability in PC1 and PC2 that was nearly identical to the observations; higher resolution grids did not 206 

yield meaningful improvements.  The vertical resolution is further consistent with resolution of 207 

moisture content measurements.  Additional details of the experimental setting and geospatial 208 

analysis are given by Schaap [2013].  Once kriging was completed, PC1 and PC2 were back-209 

transformed into sand, silt and clay percentages.  Point values of these kriged results formed prior 210 

estimates for purposes of inverse modeling. 211 

 212 

1.3. Soil Hydraulic Properties 213 

The Rosetta-H3 pedotransfer function model [Schaap et al., 2001] was applied to the three-214 

dimensional (3D) kriged fields of sand, silt, clay, and bulk density determined in Section 1.2 to obtain 215 

prior estimates of parameters entering into the Mualem-van Genuchten model (van Genuchten [1980]; 216 

Mualem [1976], abbreviated here as VGM) for water retention (1) and unsaturated hydraulic 217 

conductivity (2): 218 
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unsaturated conditions); θr (cm3 cm-3) and θs (cm3 cm-3) are residual and saturated moisture contents, 224 

respectively; α (> 0, in cm-1) and n (> 1) are curve-shape parameters; and m = 1−1/n.  In (2), Ks is the 225 

saturated hydraulic conductivity (cm d-1) while L is an empirical parameter with a value of 0.5 (Mualem 226 

[1976]).  The application of Rosetta-H3 to the kriged field of texture and bulk density thus yields 3D 227 

distributions of each of the five VGM parameters θr, θs, α, n and Ks.  The purpose of our work is not 228 

to compare one PTF with another but to introduce and illustrate two methods of parameterizing vadose 229 

zone hydraulic properties based on a (in principle any) PTF and clustering, followed by inversion. 230 

Therefore, only Rosetta-H3 PTF is reported in this study. 231 

 232 

2. Inverse Modeling Approach 233 

To implement our homogeneous and heterogeneous cluster approaches we subdivide the flow 234 

domain into clusters using the method of k-means clustering.  In the homogeneous cluster approach, 235 

initial estimates of the VGM parameters are obtained by averaging over all grid points belonging to a 236 

cluster.  In the heterogeneous cluster approach, initial VGM estimates vary from one grid point to 237 

another, each of which is associated with a cluster-specific scaling factor.  We optimize hydraulic 238 

parameters during the inversion of the homogeneous approach, while we optimize scale factors in the 239 

case of the heterogeneous approach. 240 

 241 

2.1. Definition of Clusters and Inversion Method  242 
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Various ways to decompose a domain into clusters are available, such as grouping spatially varying 243 

kriged values of target quantities into stratigraphic [e.g., Wang et al., 2003] or USDA textural classes.  244 

Here we adopt k-means clustering according to which kriged values are grouped into k clusters by 245 

minimizing 246 

2

1 1

( ) || ||
ink

ij i

i j

kξ µ
= =

= −∑∑ x                  (4) 247 

where ni is the number of data points belonging to cluster i; xij is a vector of attributes (i.e., kriged sand, 248 

silt, clay percentages in this study) of the jth data point in cluster i; µi is a vector of attribute mean values 249 

in cluster i; and || || denotes Euclidean norm (in data units).  To perform k-means clustering we used 250 

the algorithm of Hartigan and Wong [1979] in the statistical package R (version 3.0.2, Ihaka and 251 

Gentleman, 1996; R development core team, 2005, http://www.R-project.org).  A series of preliminary 252 

analyses suggested that classification relying on k-means clustering of kriged soil texture yielded the 253 

most satisfactory results (in terms of root mean square error between computed and observed water 254 

contents at all times through the domain of interest). Simulations based on k-means clustering of initial 255 

soil hydraulic parameters determined in Section 1.3 yielded results of distinctly inferior quality. A 256 

reason for this might be that initial soil hydraulic parameter estimates are not very accurate, and 257 

posterior estimates are not available prior to inversion. We therefore rely on k-means clustering of soil 258 

texture.  Clustering associates each kriged point with a unique cluster without requiring that points 259 

defining a cluster be contiguous in space. 260 

As the first principal component (PC1) represents closely the overall soil texture at the site, we 261 
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illustrate in Figure 2a its spatial variability along an east-west vertical section at y = 30 m (see Figure 262 

1), which passes through wells 422, 423 and 425. This is to be compared with k = 2, 3, ... 6 soil texture 263 

clusters in Figures 2b, 2c, ... 2f defined by the k-means method.  As expected, increasing the number 264 

k of clusters renders their distribution closer and closer to that of PC1 in Figure 2a.  Note that the 265 

clusters are generally not contiguous in space.  Three-dimensional versions of these clusters form the 266 

basis for our definition of homogeneous and heterogeneous clusters below. 267 

In the homogeneous cluster approach, each VGM parameter within a cluster is a constant.  Table 268 

1 lists arithmetic mean sand, silt and clay percentages for clusters associated with various numbers k 269 

of clusters and arithmetic mean values of PTF-derived (using Rosetta-H3) hydraulic parameter 270 

estimates in each cluster.  Parameters α, n and Ks in Table 1 are antilogs of average log10(α), log10(n) 271 

and log10(Ks) Rosetta estimates. These represent prior hydraulic parameters for the homogeneous 272 

cluster approach. Posteriors are estimated by the simulation procedure defined in Section 2.2. 273 

In the heterogeneous cluster approach parameters are expressed as 274 

( ) ( )i i i
′ = ×p B px x                   (5) 275 

where ( )ip x  is a vector whose entries are the five VGM parameters θr, θs, log10(α), log10(n), and 276 

log10(Ks) estimated from texture and bulk density data using Rosetta-H3 at location x = (x, y, z) in 277 

cluster i (i = 1, ..., k).  The square matrix iB  in (5) is taken to be diagonal, containing scaling factors 278 

initialized to 1 and then optimized by inversion.  Vector ( )i
′p x  thus represents posterior (inverse) 279 

estimates of the five VGM parameters.  We designate forward runs with homogeneous clusters HoC 280 

and those with heterogeneous clusters HeC. Inverse runs are designated by prefix I and suffix k where 281 
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k denotes number of clusters. 282 

 283 

2.2. Vadose Zone Flow Simulation and Estimation Criterion 284 

2.2.1. Numerical Simulation of Flow 285 

Water flow is simulated with the Subsurface Transport Over Multiple Phases (STOMP) code of 286 

White and Oostrom [2006] that solves the Richards equation using finite differences with Newton-287 

Raphson iteration.  Consistent with the geospatial grid, the simulation grid cells measure 5 × 5 m2 288 

horizontally covering an area of 60 × 60 m2 (Figure 1), and 0.25 m vertically, extending down to depth 289 

14.5 m.  In both Experiment 3 and 4, vertical flux at the top boundary is prescribed to be zero except 290 

during irrigation when it is set equal to the daily irrigation rate across the inner 50 × 50 m2 area (Figure 291 

1).  Pressure head at the bottom boundary, at a depth of 14.5 m, is set equal to positive 1.5 m to reflect 292 

the presence of a perched water table at a depth of 13 m [Wang et al., 2003].  As the irrigated area 293 

was surrounded by a tarp-covered collar which helped render flow to be predominantly vertical 294 

[Schaap, 2013], no flow is allowed to take place across the four lateral sides of the grid during flow 295 

simulations.  Experiment 3 is used for the model calibrations and flow is simulated over a period of 296 

95 days including a 47-day pre-irrigation period from DOY 67.5 to DOY 114.5, 28 days of irrigation 297 

from DOY 114.5 to DOY 142.5, and 20 redistribution days from DOY 142.5 to DOY 162.5.  298 

Observation data in Experiment 4 is used for model validations, which includes 230-day irrigation 299 

period from DOY 450 to DOY 680, and 65 redistribution period from DOY 680 to DOY 744.  300 



 18

Initial moisture contents on DOY 67.5 at locations other than the neutron wells [e.g., Schaap, 2013] 301 

are not available.  Due to the prolonged drainage period prior to DOY 67.5, moisture contents at the 302 

neutron wells were nearly constant with the zeroth moment of moisture content (see Appendix A) 303 

varying only by a few millimeters over a total profile length of 12.5 m between DOY 17.5 and 114.5 304 

(See Figure 8.5 in Schaap [2013]).  Tensiometer pressure head readings at depths 3, 5 and 10 m, 305 

ranging between negative 2 and negative 3.5 m, were also nearly constant over time. This implies that 306 

total head is not constant throughout the profile (but rather varies with depth) and the system is thus 307 

not under static equilibrium. Ambient flow prior to infiltration, and following redistribution, is 308 

nevertheless negligibly small due to the low hydraulic conductivity of the profile at its ambient water 309 

content and pressure head values.  We therefore assumed that there should be a strong correlation 310 

between texture and neutron thermalization count ratio (CR) [for details see Schaap, 2013].  A 311 

stepwise regression between observed CR for DOY 67.5 and observed texture yielded the following 312 

expression: 313 

2 2= × + × + × + × + × × +CR a sand b silt c sand d silt e sand silt f         (6) 314 

where sand and silt are expressed as percentages, respectively, while a = 0.3210; b = 0.4038; c = -315 

0.0017; d = -0.0030; e = -0.0039; f = -13.8815; the Pearson correlation coefficient (R) was 0.71.  316 

Equation (6) was subsequently used to estimate CR for all non-well grid points in the flow domain.  317 

Initial moisture contents for all grid points were subsequently estimated using a site-specific neutron 318 

thermalization model [Schaap, 2013] : 319 
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21 1 1a CR b PC c PC d PC CR eθ = × + × + × + × × +            (7) 320 

where a = 0.520; b = 0.0119; c = -7.545×e-5; d = -5.097×e-3; e = -0.544. 321 

Regardless of inversion method, preliminary simulations consistently resulted in substantial 322 

drainage prior to the start of infiltration on DOY 114.5, contradicting observations of nearly constant 323 

moisture contents.  This may be the consequence of inaccurate initial moisture content derivation 324 

from (6) and (7) or inaccurate initial hydraulic parameter estimation by PTF (the estimates being 325 

inconsistent with water retention at high pressure or hydraulic conductivity).  This problem 326 

persisted even after inversion, mainly because of the sparse observations on dates with presumably 327 

constant moisture content (2 dates) before the start of infiltration compared to the 26 observations 328 

with dynamic moisture content during and after the infiltration period.  Ad-hoc approaches, such as 329 

assigning large weights to observations before DOY 114.5 did not alleviate the problem. 330 

To eliminate the inconsistency we adopted a three-step approach to inversion, applied in each 331 

case. The 3-step approach is not applicable to models HoC and HeC, which do not entail inversion; 332 

initial water contents for these two models were based on regression results derived from (6) and (7).  333 

In Step I, inversion was conducted by simulating the entire 95-day period of the experiment starting 334 

with initial moisture contents determined in the above manner.  The same initial moisture contents 335 

coupled with parameter estimates obtained in Step I were then used to predict, through forward 336 

simulation (Step II), moisture contents at the end of a 50-day continued drainage period (i.e. this 337 

period did not have any infiltration).  The final moisture contents of Step II, and parameters 338 

obtained in Step I, were then assigned as initial values on DOY 67.5 in a final 95-day inversion run 339 
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during Step III. 340 

Validation was carried out by running the models forward in time from DOY 67.5 till DOY 744 341 

by using initial moisture contents and final parameters from Step III. Simulation results between 342 

DOY 450 and 744 were subsequently compared with moisture content observations in Experiment 4.  343 

  344 

2.2.2. Model Quality Measures 345 

Model inversion is conducted with PEST [Doherty et al., 1994; Doherty, 2003] using Python and 346 

Unix-style shell scripts to facilitate data interchange with STOMP.  Average soil hydraulic parameters 347 

in IHoCk and scaling factors in IHeCk are estimated by minimizing the sum of squared differences 348 

between observed and simulated moisture contents at all times through the domain of interest.  349 

Estimates are constrained to ensure that 0 < θr < 0.2, 0.2 < θs < 0.6, 0.001 < α < 0.1 (1/cm), 1.1 < n < 350 

5.0, 0 < Ks < 50,000 (cm/day).  As primary measures of model fit we use the root mean square error 351 
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where Nz is the number of (space-time varying) moisture content observations, Nz = 11,020 in model 355 

calibration and 9,297 in model validation; iθ  and iθ′  are the ith observed and simulated moisture 356 
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contents, respectively; and θ  is the average of iθ . RMSE is dimensionless (cm3 water per cm3 357 

sediment).  Other measures of model fit we use include zeroth, first and second temporal moments of 358 

observed and simulated moisture contents (Appendix A). 359 

 360 

3. Results and Discussion 361 

3.1. Forward and Inverse Modeling Results 362 

Figure 3 shows how RMSE varies with number of clusters for various forward and inverse schemes.  363 

As one might expect, RMSE is largest (0.0688) in the forward homogeneous single cluster case HoC1, 364 

dropping down to below 0.045 as the number of clusters increases.  No clustering is required for the 365 

heterogeneous case HeC to yield a similarly small RMSE of 0.0429 without inversion. 366 

Inversion is seen to reduce RMSE considerably in all cases.  In the case of IHoC1 RMSE 367 

decreases from 0.0688 to 0.0619, declining further to 0.0316 as the number of clusters is increased to 368 

2 (IHoC2) down to 0.0260 when this number reaches 4 (IHoC4).  Inversion renders the heterogeneous 369 

scheme better than the homogeneous scheme: RMSE = 0.0309 in the single cluster case IHeC1 and 370 

0.0224 in the four-cluster case IHeC4.  It is noted that whereas varying the initial hydraulic parameters 371 

of forward and inverse models may change the RMSE values, it would not affect our overall 372 

conclusions in any significant way. 373 

Figure 3 suggests that, in all cases, increasing the number of clusters beyond 4 fails to reduce 374 

RMSE further. Like Neuman [1973], we attribute this to overparameterization and adopt four clusters 375 
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as optimum subdivision of our domain.  More sophisticated performance metrics such as AIC [Akaike, 376 

1974; Ye et al., 2008], AICc [Hurvich and Tsai, 1989] and BIC [Schwarz, 1978] yielded similar results 377 

(not reported). 378 

 379 

3.2. Interpretation of Results 380 

Table 2 lists estimated scale factors (ratios between posterior and prior values) associated with 381 

IHoC4 and IHeC4 inversion and corresponding standard errors.  A standard error is calculated in 382 

PEST as the square root of parameter estimation variance; the latter constitute diagonal entries of the 383 

parameter covariance matrix, computed to lead order of approximation.  We note that these scale 384 

factors correspond to log10 transformations of α, n, and Ks, as described in Section 2.1.  All standard 385 

errors are low, suggesting that so is parameter estimation uncertainty.  These models also yielded 386 

similar patterns in the resulting optimized scale factors, i.e., if one method adjusts a scale factor upward 387 

or downward from an initial ratio of 1.0, so does the other method (with only limited exceptions).  The 388 

ranges of estimated scale factors within each of the two methods are more substantial for some 389 

optimized parameters than for others.  The largest range is found for θr (from 0.64 to 3.00, across both 390 

models and clusters), n (from 0.64 to 1.61), and Ks (from 1.06 to 1.66) and moderate for α (from 0.72 391 

to 1.13) and θs (from 0.66 to 0.99).  Actual VGM parameter values (not shown in Table 2) were 392 

consistent with limited laboratory measurements on disturbed cores. 393 

A visual comparison of simulated moisture contents and observed values corresponding to HeC, 394 

IHoC4 and IHeC4 for model calibration and validation is provided in Figure 4.  Inversion is seen to 395 
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improve the quality of this visual comparison markedly in both the homogeneous and heterogeneous 396 

clustering cases.  Whereas heterogeneous clusters yield better results than do homogeneous clusters, 397 

the improvement does not appear to be dramatic for both model calibration and validation.  398 

Quantitatively, in model calibration, inversion reduces the RMSE (in comparison to HeC of calibration) 399 

by 40.8% in the homogeneous and 47.8% in the heterogeneous cases, bringing about an increase in the 400 

coefficient of determination (R2) from 0.66 for HeC through 0.88 for IHoC4 to 0.91 for IHeC4.  RMSE 401 

values associated with models IHoC4 and IHeC4 were lower during the validation period (as they had 402 

been during the calibration period) by 43.7% and 49.7%, respectively, than that associated with model 403 

HeC; correspondingly, R2 increased from 0.66 in the case of HeC to 0.83 and 0.87 in the respective 404 

cases of IHoC4 and IHeC4.  The poor performance of HeC results is likely due to (a) uncertainty in 405 

the model used to convert neutron thermalization CR and texture into moisture contents [Schaap, 2013], 406 

(b) the approximation of initial moisture contents in forward simulations, as discussed in Section 2.2.1, 407 

and (c) the assumption of the Gaussian nature of univariate and spatial distributions which is not 408 

entirely consistent with findings by Guadagnini et al. [2013]. 409 

The validation results strengthen our conclusion that both clustering approaches improve 410 

parameter estimates considerably in comparison to those based solely on PTF estimates from soil 411 

texture.  The improvement achieved with heterogeneous clusters is slightly better than that obtained 412 

with homogeneous clusters.  413 

We end by comparing in Figures 5a, 5b, and 5c the ways in which the first three temporal moments 414 

of moisture content 0( )M t , 1( )M t  and 2( )M t , defined in Appendix A, evolve when computed on 415 
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the basis of observations and simulations corresponding to HeC, IHoC4 and IHeC4.  Only results for 416 

Experiment 3 are shown because the number of neutron count measurements during Experiment 4 was 417 

too small to allow computing spatial moments.  The depicted moments are averages over seven wells 418 

as explained in Appendix A.  0( )M t  represents incremental moisture content between depth 0.25 419 

and 12.5 m, multiplied by this depth (hence given in meters); 1( )M t  corresponds to mean depth (in 420 

meters) of the center of mass of infiltrated water (given in meters); and 2( )M t  measures the vertical 421 

spread of moisture content about its center of mass (in square meters).  Because 1( )M t  and 2( )M t422 

are normalized by 0( )M t , which is small prior to DOY 114.5, their values during this period are 423 

unstable and therefore not plotted. 424 

Zeroth moments computed on the basis of observations and simulations correspond closely to that 425 

of cumulative infiltration in Figure 5a until DOY 130.  Following this date, they first drop below the 426 

latter and, following the end of the infiltration period on DOY 142.5, decline with time.  This, as 427 

explained in Appendix A, is due to the infiltration front’s arrival at depth 12.5 m on DOY 130. It also 428 

explains the stabilization of 1( )M t  and gradual decrease in 2( )M t  seen, respectively, in Figures 5b 429 

and 5c. Whereas HeC simulations underestimate observation-based 1( )M t  significantly at all times, 430 

results based on IHoC4 and IHeC4 represent the latter closely and consistently.  The poor 431 

performance of HeC results can be attributed in part, as noted previously, to the poor definition of 432 

initial moisture contents in this forward simulation.  Whereas IHoC4 results overestimates 433 

observation-based 2( )M t  significantly at all times, IHeC4 results underestimate the latter at all but 434 

intermediate time.  It is difficult to tell on the basis of Figure 5 which of these two inverse approach 435 
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represent observation-based moments better. 436 

 437 

4. Conclusions 438 

Our work leads to four major conclusions: 439 

1. Whereas it is possible to estimate deep vadose zone hydraulic parameters on the basis of soil 440 

texture data with the aid of a pedotransfer function (PTF), as many soil and climate modelers tend to 441 

do, we find it necessary to improve upon these estimates by conditioning them on observed system 442 

variables such as moisture content through the adoption of a suitable inverse method. The same 443 

conclusion was reached previously by Wang et al. [2003]. 444 

2. We proposed two ways of parameterizing vadose zone hydraulic properties on the basis of soil 445 

texture data by utilizing PTF and k-means clustering.  In contrast to traditional zonation often 446 

employed in hydrologic inverse modeling, a cluster in our model may (and generally does) consist of 447 

noncontiguous subdomains.  In both of our two approaches hydraulic parameters at each grid point in 448 

a cluster are estimated initially with the aid of a PTF.  The heterogeneous cluster approach preserves 449 

heterogeneity without introducing more adjustable parameters.  450 

3. Upon applying our approach to experimental data from a deep vadose zone site near Maricopa, 451 

Arizona, we found clustering combined with inversion improved estimates of moisture contents 452 

considerably in comparison to those based solely on soil texture data.  The optimum number of 453 

clusters in both cases was found to be the same (four).  In terms of root mean square errors, the 454 
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improvement achieved with heterogeneous clusters was slightly better than that obtained with 455 

homogeneous clusters.  Moment analysis revealed little differences between the two methods. 456 

4. The calibrated model was validated against an independent infiltration experiment, producing 457 

results of essentially the same quality as those obtained during calibration.  458 
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Appendix A: Temporal moment analysis 612 

For a given borehole the zeroth order temporal moment of moisture contents is defined as 613 

12.5

0.25

0( ) ( , )diff

z

M t t z zθ
=

= ×∆∑                 (A1) 614 

where θdiff is the difference between observed or simulated moisture contents at time t and their initial 615 

values, z being depth and ∆z = 0.25 m a depth increment. 0( )M t  represents the incremental moisture 616 

content between depth 0.25 and 12.5 m, multiplied by this depth (hence given in meters). In this study 617 

we calculate 0( )M t  at each of seven neutron wells and average the results (some values measured in 618 

well 405, and all values measured in well 442, are considered to be unreliable; we therefore exclude 619 

these two wells from our analysis of moments). The temporal evolution of this average M0 should 620 

follow closely the actual cumulative amount of irrigation water in the absence of horizontal and vertical 621 

drainage losses. 622 

The first temporal moment is calculated as 623 
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1
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0 diff
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M t t z z z
M

θ
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= × ×∆∑               (A2) 624 

and given in square meters. 1( )M t  represents the mean depth (in meters) of the center of mass of 625 

infiltrated water in a borehole; as in the case of M0(t), we average it over seven wells. When water 626 

drainage below a depth of 12.5 m is not negligible (in which case M0(t) does not coincide with the total 627 

volume injected), 1( )M t  provides information only about the center of mass of infiltrating water 628 

above this depth. 629 

The second temporal moment, 630 
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measures the vertical spread of moisture content about its center of mass.  632 

 633 

Tables 634 

 635 

Table 1. Soil clusters based on textural data, corresponding mean sand, silt and clay percentages and 636 
PTF derived mean hydraulic parameters. 637 

Number k of 

clusters 
Cluster Sand % Silt % Clay % 

θr, 

cm3cm-3 

θs, 

cm3cm-3 

α, 
1/cm 

n 
Ks, 

cm/day 

1 a 81.034 12.633 6.333 0.041 0.316 0.040 1.867 64.845 

2 
a 71.279 19.135 9.587 0.040 0.328 0.043 1.429 24.912 

b 88.488 7.665 3.846 0.042 0.308 0.038 2.292 134.694 

3 

a 68.026 21.280 10.694 0.041 0.333 0.042 1.376 20.858 

b 89.901 6.850 3.249 0.042 0.306 0.037 2.440 165.878 

c 79.063 13.751 7.186 0.041 0.318 0.044 1.609 40.933 

4 

a 92.769 5.149 2.083 0.040 0.302 0.036 2.814 261.011 

b 66.602 22.072 11.327 0.041 0.336 0.040 1.363 19.750 

c 85.501 9.401 5.098 0.043 0.312 0.040 1.981 84.388 

d 75.766 16.291 7.944 0.040 0.321 0.046 1.498 31.308 

5 

a 77.282 14.861 7.857 0.040 0.321 0.045 1.539 35.178 

b 92.829 5.125 2.046 0.040 0.302 0.036 2.823 263.575 

c 65.888 19.041 15.071 0.049 0.371 0.029 1.403 24.892 

d 85.859 9.211 4.931 0.043 0.311 0.040 2.008 88.397 

e 69.443 23.309 7.248 0.033 0.302 0.055 1.355 18.064 

6 

a 92.927 5.116 1.957 0.040 0.301 0.036 2.840 267.898 

b 62.320 23.681 14.000 0.045 0.353 0.032 1.357 18.383 

c 85.233 6.696 8.071 0.047 0.328 0.036 1.881 81.146 

d 70.488 20.305 9.207 0.038 0.324 0.047 1.387 22.141 

e 86.240 10.699 3.061 0.041 0.302 0.043 2.094 94.359 

f 77.581 14.791 7.628 0.040 0.320 0.045 1.546 35.484 

638 
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Table 2. Optimized values of scale factors and standard errors for IHoC4 and IHeC4 models.  Scale 639 
factors for IHoC4 were obtained upon dividing optimal VGM parameters by their initial estimates in 640 
Table 1 (4 clusters). 641 

Cluster Parameters 

IHoC4 IHeC4 

Scale factor 
Standard 

error 
Scale factor 

Standard 

error 

a 

θr 2.565 0.0023 2.8816 0.0064 

θs 0.9868 0.0025 0.6649 0.0052 

α 1.043 0.0098 0.9766 0.0023 

n 1.5454 0.003 1.196 0.0025 

Ks 1.3122 0.0226 1.0555 0.002 

b 

θr 0.8878 0.0004 0.6438 0.0053 

θs 0.8708 0.0005 0.825 0.0028 

α 0.7153 0.0004 0.9405 0.0017 

n 0.6492 0.0006 0.7354 0.0018 

Ks 1.2449 0.0069 1.5657 0.0018 

c 

θr 2.6837 0.0004 3.0034 0.0048 

θs 0.9385 0.001 0.7127 0.0051 

α 1.0039 0.005 0.9133 0.0027 

n 1.4952 0.0033 1.0051 0.0025 

Ks 1.3257 0.0018 1.6599 0.0017 

d 

θr 2.6325 0.0006 1.0241 0.0093 

θs 0.9153 0.0007 0.9259 0.0025 

α 1.1303 0.0051 0.8413 0.0021 

n 1.6109 0.0024 0.6401 0.0026 

Ks 1.242 0.0067 1.4387 0.0033 

  642 
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Figures 643 

 644 

Figure 1. Location of nine monitoring boreholes at Maricopa site. All moisture content data from 645 
wells designated by solid circles were employed during inversion; all or some such data in wells 646 
designated by open circles were considered unreliable and omitted (see text).  The 60×60 meter 647 
outer solid square was covered by tarp to prevent evaporation; the inner 50×50 meter square was 648 
drip irrigated. 649 
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 650 

 

Figure 2. (a) cross sectional depth profile (at y = 30m in Figure 1) of first principal component 651 
(PC1) extracted from soil texture data with labeled contours of PC1 values. PC1 measures the 652 
coarseness of soil similar to that of sand ; (b-f) clusters of kriged soil texture data with k = 2-6. 653 
Numbers at bottom designate well numbers in Figure 1. 654 
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 655 

Figure 3. RMSE versus number of clusters and model type (vertical axis is in logarithmic scale). 656 
HoC is initial simulation of IHoC inversion; HeC indicates simulation of full heterogeneous domain 657 
with hydraulic parameter estimates from Rosetta-H3 at all grid points; IHoC represents 658 
homogeneous cluster inversion; IHeC indicates heterogeneous cluster inversion.659 
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 660 

Figure 4. Comparison between observed and simulated moisture contents using calibration data for 661 
(a) HeC, (b) IHoC4 and (c) IHeC4 and validation data for (d) HeC, (e) IHoC4 and (f) IHeC4. Red 662 
represents high data density, blue low density.  663 
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Figure 5. Comparison of (a) zeroth (M0), (b) first (M1) and (c) second moment (M2) of measured 664 
and simulated moisture front in wells based on experimental data, HeC, IHoC4 and IHeC4. Vertical 665 
dashed lines indicate start (DOY 114.5) and end (DOY 142.5) dates of infiltration. 666 
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Table Captions 667 

Table 1. Soil clusters based on textural data, corresponding mean sand, silt and clay percentages and 668 

PTF derived mean hydraulic parameters. 669 

Table 2. Optimized values of scale factors and standard errors for IHoC4 and IHeC4 models.  Scale 670 

factors for IHoC4 were obtained upon dividing optimal VGM parameters by their initial estimates in 671 

Table 1 (4 clusters). 672 

Figure Captions 673 

Figure 1. Location of nine monitoring boreholes at Maricopa site. All moisture content data from 674 

wells designated by solid circles were employed during inversion; all or some such data in wells 675 

designated by open circles were considered unreliable and omitted (see text). The 60×60 meter outer 676 

solid square was covered by tarp to prevent evaporation; the inner 50×50 meter square was drip 677 

irrigated. 678 

Figure 2. (a) cross sectional depth profile (at y = 30m in Figure 1) of first principal component (PC1) 679 

extracted from soil texture data with labeled contours of PC1 values. PC1 measures the coarseness of 680 

soil similar to that of sand ; (b-f) clusters of kriged soil texture data with k = 2 - 6. Numbers at bottom 681 

designate well numbers in Figure 1. 682 

Figure 3. RMSE versus number of clusters and model type (vertical axis is in logarithmic scale). 683 

HoC is initial simulation of IHoC inversion; HeC indicates simulation of full heterogeneous domain 684 

with hydraulic parameter estimates from Rosetta-H3 at all grid points; IHoC represents homogeneous 685 
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cluster inversion; IHeC indicates heterogeneous cluster inversion. 686 

Figure 4. Comparison between observed and simulated moisture contents using calibration data for 687 

(a) HeC, (b) IHoC4 and (c) IHeC4 and validation data for (d) HeC, (e) IHoC4 and (f) IHeC4. Red 688 

represents high data density, blue low density. 689 

Figure 5. Comparison of (a) zeroth (M0), (b) first (M1) and (c) second moment (M2) of measured 690 

and simulated moisture front in wells based on experimental data, HeC, IHoM4 and IHeC4. Vertical 691 

dashed lines indicate start (DOY 114.5) and end (DOY 142.5) dates of infiltration. 692 


