92 research outputs found

    Histological and micro-CT evidence of stigmatic rostellum receptivity promoting auto-pollination in the Madagascan orchid Bulbophyllum bicoloratum

    Get PDF
    Background: The rostellum, a projecting part of the gynostemium in orchid flowers, separates the anther(s) from the stigma and thus commonly prevents auto-pollination. Nonetheless, as a modified (usually distal) portion of the median stigma lobe, the rostellum has been frequently invoked of having re-gained a stigmatic function in rare cases of orchid auto-pollination. Here it is shown that a newly discovered selfing variant of Madagascan Bulbophyllum bicoloratum has evolved a modified rostellum allowing the penetration of pollen tubes from in situ pollinia. Methods: Gynostemium micro-morphology and anatomy of selfing and outcrossing variants of B. bicoloratum was studied by using light and scanning electron microscopy and histological sections. Pollen tube growth in the selfing variant was further observed via X-ray computed microtomography (micro-CT), providing 3D reconstructions of floral tissues at a micron scale. Findings: Selfing variants possess a suberect (‘displaced) rostellum rather than the conventional, erect type. Very early in anthesis, the pollinia of selfers are released from the anther and slide down onto the suberect rostellum, where pollen tube growth preferentially occurs through the non-vascularized, i.e. rear (adaxial) and (semi-) lateral parts. This penetrated tissue is comprised of a thin layer of elongate and loosely arranged cells, embedded in stigmatic exudates, as also observed in the stigmatic cavity of both selfing and outcrossing variants. Conclusions: Our results provide the first solid evidence of a stigmatic function for the rostellum in orchid flowers, thereby demonstrating for the first time the feasibility of the micro-CT technique for accurately visualizing pollen tube growth in flowering plants. Rostellum receptivity in B. bicoloratum probably uniquely evolved as an adaptation for reproductive assurance from an outcrossing ancestor possessing an erect (non-receptive) rostellum. These findings open up new avenues in the investigation of an organ that apparently re-gained its ‘primordial function of being penetrated by pollen tubes.P20726-B03P17124-B0(VLID)170467

    Emergence of a floral colour polymorphism by pollinator-mediated overdominance.

    Get PDF
    Maintenance of polymorphism by overdominance (heterozygote advantage) is a fundamental concept in evolutionary biology. In most examples known in nature, overdominance is a result of homozygotes suffering from deleterious effects. Here we show that overdominance maintains a non-deleterious polymorphism with black, red and white floral morphs in the Alpine orchid Gymnadenia rhellicani. Phenotypic, metabolomic and transcriptomic analyses reveal that the morphs differ solely in cyanidin pigments, which are linked to differential expression of an anthocyanidin synthase (ANS) gene. This expression difference is caused by a premature stop codon in an ANS-regulating R2R3-MYB transcription factor, which is heterozygous in the red colour morph. Furthermore, field observations show that bee and fly pollinators have opposite colour preferences; this results in higher fitness (seed set) of the heterozygous morph without deleterious effects in either homozygous morph. Together, these findings demonstrate that genuine overdominance exists in nature

    Electric Field Control of Spin Transport

    Full text link
    Spintronics is an approach to electronics in which the spin of the electrons is exploited to control the electric resistance R of devices. One basic building block is the spin-valve, which is formed if two ferromagnetic electrodes are separated by a thin tunneling barrier. In such devices, R depends on the orientation of the magnetisation of the electrodes. It is usually larger in the antiparallel than in the parallel configuration. The relative difference of R, the so-called magneto-resistance (MR), is then positive. Common devices, such as the giant magneto-resistance sensor used in reading heads of hard disks, are based on this phenomenon. The MR may become anomalous (negative), if the transmission probability of electrons through the device is spin or energy dependent. This offers a route to the realisation of gate-tunable MR devices, because transmission probabilities can readily be tuned in many devices with an electrical gate signal. Such devices have, however, been elusive so far. We report here on a pronounced gate-field controlled MR in devices made from carbon nanotubes with ferromagnetic contacts. Both the amplitude and the sign of the MR are tunable with the gate voltage in a predictable manner. We emphasise that this spin-field effect is not restricted to carbon nanotubes but constitutes a generic effect which can in principle be exploited in all resonant tunneling devices.Comment: 22 pages, 5 figure

    Unraveling the Developmental and Genetic Mechanisms Underpinning Floral Architecture in Proteaceae

    Get PDF
    Proteaceae are a basal eudicot family with a highly conserved floral groundplan but which displays considerable variation in other aspects of floral and inflorescence morphology. Their morphological diversity and phylogenetic position make them good candidates for understanding the evolution of floral architecture, in particular the question of the homology of the undifferentiated perianth with the differentiated perianth of core eudicots, and the mechanisms underlying the repeated evolution of zygomorphy. In this paper, we combine a morphological approach to explore floral ontogenesis and a transcriptomic approach to access the genes involved in floral organ identity and development, focusing on Grevillea juniperina, a species from subfamily Grevilleoideae. We present developmental data for Grevillea juniperina and three additional species that differ in their floral symmetry using stereomicroscopy, SEM and High Resolution X-Ray Computed Tomography. We find that the adnation of stamens to tepals takes place at early developmental stages, and that the establishment of bilateral symmetry coincides with the asymmetrical growth of the single carpel. To set a framework for understanding the genetic basis of floral development in Proteaceae, we generated and annotated de novo a reference leaf/flower transcriptome from Grevillea juniperina. We found Grevillea homologs of all lineages of MADS-box genes involved in floral organ identity. Using Arabidopsis thaliana gene expression data as a reference, we found homologs of other genes involved in floral development in the transcriptome of G. juniperina. We also found at least 21 class I and class II TCP genes, a gene family involved in the regulation of growth processes, including floral symmetry. The expression patterns of a set of floral genes obtained from the transcriptome were characterized during floral development to assess their organ specificity and asymmetry of expression

    Immunogenicity of High-Dose vs. MF59-adjuvanted vs. Standard Influenza Vaccine in Solid Organ Transplant Recipients: The STOP-FLU trial.

    Get PDF
    BACKGROUND The immunogenicity of the standard influenza vaccine is reduced in solid-organ transplant (SOT) recipients, so that new vaccination strategies are needed in this population. METHODS Adult SOT recipients from nine transplant clinics in Switzerland and Spain were enrolled if they were >3 months after transplantation. High, with stratification by organ and time from transplant. The primary outcome was vaccine response rate, defined as a ≥4-fold increase of hemagglutination-inhibition titers to at least one vaccine strain at 28 days post-vaccination. Secondary outcomes included PCR-confirmed influenza and vaccine reactogenicity. RESULTS 619 patients were randomized, 616 received the assigned vaccines, and 598 had serum available for analysis of the primary endpoint (standard, n=198; MF59-adjuvanted, n=205; high-dose, n=195 patients). Vaccine response rates were 42% (84/198) in the standard vaccine group, 60% (122/205) in the MF59-adjuvanted vaccine group, and 66% (129/195) in the high-dose vaccine group (difference in intervention vaccines vs. standard vaccine, 0.20 [97.5% CI 0.12-1]; p<0.001; difference in high-dose vs. standard vaccine, 0.24 [95% CI 0.16-1]; p<0.001; difference in MF59-adjuvanted vs. standard vaccine, 0.17 [97.5% CI 0.08-1]; p<0.001). Influenza occurred in 6% the standard, 5% in the MF59-adjuvanted, and 7% in the high-dose vaccine groups. Vaccine-related adverse events occurred more frequently in the intervention vaccine groups, but most of the events were mild. CONCLUSIONS In SOT recipients, use of an MF59-adjuvanted or a high-dose influenza vaccine was safe and resulted in a higher vaccine response rate. TRIAL REGISTRATION Clinicaltrials.gov NCT03699839

    Book review

    No full text

    Data-microCT-landmarks_morphologika-format

    No full text
    Text file in Morphologika format, listing the coordinates for 17 geometric landmarks (as determined by micro-computed tomography) in the different flower samples

    Experimental study and steady-state simulation of biogeochemical processes in laboratory columns with aquifer material

    No full text
    Abstract Packed bed laboratory column experiments were performed to simulate the biogeochemical processes resulting from microbially catalyzed oxidation of organic matter. These included aerobic respiration, denitrification, and Mn(IV), Fe(III) and SO 4 reduction processes. The effects of these reactions on the aqueous-and solid-phase geochemistry of the aquifer material were closely examined. The data were used to model the development of alkalinity and pH along the column. To study the independent development of Fe(III)-and SO 4 -reducing environments, two columns were used. One of the columns (column 1) contained small enough concentrations of SO 4 in the influent to render the reduction of this species unimportant to the geochemical processes in the column. The rate of microbially catalyzed reduction of Mn(IV) changed with time as evidenced by the variations in the initial rate of Mn(II) production at the head of the column. The concentration of Mn in both columns was controlled by the solubility of rhodochrosite (MnCO 3(S) ). In the column where significant SO 4 reduction took place (column 2), the concentration of dissolved Fe(II) was controlled by the solubility of FeS. In column 1, where SO 4 reduction was not important, maximum dissolved Fe(II) concentrations were controlled by the solubility of siderite (FeCO 3(S) ). Comparison of solid-phase and aqueous-phase data suggests that nearly 20% of the produced Fe(II) precipitates as siderite in column 1. The solid-phase analysis also indicates that during the course of experiment, approximately 20% of the total Fe(III) hydroxides and more than 70% of the amorphous Fe(III) hydroxides were reduced by dissimilatory iron reduction. The most important sink for dissolved S(-II) produced by the enzymatic reduction of SO 4 was its direct reaction with solid-phase Fe(III) hydroxides leading initially to the formation of FeS. 0169-7722/03/$ -see front matter
    corecore