369 research outputs found
Traffic-light control in urban environment exploiting drivers' reaction to the expected red lights duration
Traffic congestion in urban environment is one of the most critical issue for drivers and city
planners for both environment and efficiency reasons. Traffic lights are one of the main tools
used to regulate traffic by diverting the drivers between different paths. Rational drivers, in
turn, react to the traffic light duration by evaluating their options and, if necessary, by changing
direction in order to reach their destination quicker. In this paper, we introduce a macroscopic
traffic model for urban intersections that incorporates this rational behavior of the drivers.
Then, we exploit it to show that, by providing additional information about the expected redtime
duration to the drivers, one can decrease the amount of congestion in the network and the
overall length of the queues at the intersections. Additionally, we develop a control policy for
the traffic lights that exploits the reaction of the drivers in order to divert them to a different
route to further increase the performances. These claims are supported by extensive numerical
simulations
Traffic-light control in urban environment exploiting drivers’ reaction to the expected red lights duration
Traffic congestion in urban environment is one of the most critical issue for drivers and city planners for both environment and efficiency reasons. Traffic lights are one of the main tools used to regulate traffic by diverting the drivers between different paths. Rational drivers, in turn, react to the traffic light duration by evaluating their options and, if necessary, by changing direction in order to reach their destination quicker. In this paper, we introduce a macroscopic traffic model for urban intersections that incorporates this rational behavior of the drivers. Then, we exploit it to show that, by providing additional information about the expected red-time duration to the drivers, one can decrease the amount of congestion in the network and the overall length of the queues at the intersections. Additionally, we develop a control policy for the traffic lights that exploits the reaction of the drivers in order to divert them to a different route to further increase the performances. These claims are supported by extensive numerical simulations
Lipid droplet availability affects neural stem/progenitor cell metabolism and proliferation.
Neural stem/progenitor cells (NSPCs) generate new neurons throughout adulthood. However, the underlying regulatory processes are still not fully understood. Lipid metabolism plays an important role in regulating NSPC activity: build-up of lipids is crucial for NSPC proliferation, whereas break-down of lipids has been shown to regulate NSPC quiescence. Despite their central role for cellular lipid metabolism, the role of lipid droplets (LDs), the lipid storing organelles, in NSPCs remains underexplored. Here we show that LDs are highly abundant in adult mouse NSPCs, and that LD accumulation is significantly altered upon fate changes such as quiescence and differentiation. NSPC proliferation is influenced by the number of LDs, inhibition of LD build-up, breakdown or usage, and the asymmetric inheritance of LDs during mitosis. Furthermore, high LD-containing NSPCs have increased metabolic activity and capacity, but do not suffer from increased oxidative damage. Together, these data indicate an instructive role for LDs in driving NSPC behaviour
Utilizzo della risonanza magnetica nella diagnosi dell'edema contusivo intraosseo a livello di estremit\ue0 distale dell'equino : 6 casi
Bone Marrow Edema (BME) is a recently recognized entity. MRI has provided
to be most powerful tool to asses BME, as the conventional imaging technique are unable to
detect trabecular injuries. \u201cBone bruising\u201d describes the post-traumatic bone marrow changes
demonstrated on MRI from a combination of haemorrhage, edema and microtrabecular
fractures, described for the first time in the human knee in 1988. Bone bruise is a potentially
important cause of orthopaedic pathology both in human and veterinary medicine, especially in
sport horses. The term \u201cbruise\u201d indicates the traumatic origin of bone marrow changes. BME is
defined as a region of hypointensity in T1 weighted sequences and hyperintensity in T2 and
STIR sequences. Of 20 lame horses underwent MRI, six were included in the study, with pain
localized at the fetlock region (5 cases) or hoof pain (1 case)
Analysis of optical coherence tomography biomarker probability detection in central serous chorioretinopathy by using an artificial intelligence-based biomarker detector.
AIM
To adopt a novel artificial intelligence (AI) optical coherence tomography (OCT)-based program to identify the presence of biomarkers associated with central serous chorioretinopathy (CSC) and whether these can differentiate between acute and chronic central serous chorioretinopathy (aCSC and cCSC).
METHODS
Multicenter, observational study with a retrospective design enrolling treatment-naïve patients with aCSC and cCSC. The diagnosis of aCSC and cCSC was established with multimodal imaging and for the current study subsequent follow-up visits were also considered. Baseline OCTs were analyzed by an AI-based platform (Discovery® OCT Fluid and Biomarker Detector, RetinAI AG, Switzerland). This software allows to detect several different biomarkers in each single OCT scan, including subretinal fluid (SRF), intraretinal fluid (IRF), hyperreflective foci (HF) and flat irregular pigment epithelium detachment (FIPED). The presence of SRF was considered as a necessary inclusion criterion for performing biomarker analysis and OCT slabs without SRF presence were excluded from the analysis.
RESULTS
Overall, 160 eyes of 144 patients with CSC were enrolled, out of which 100 (62.5%) eyes were diagnosed with cCSC and 60 eyes (34.5%) with aCSC. In the OCT slabs showing presence of SRF the presence of biomarkers was found to be clinically relevant (> 50%) for HF and FIPED in aCSC and cCSC. HF had an average percentage of 81% (± 20) in the cCSC group and 81% (± 15) in the aCSC group (p = 0.4295) and FIPED had a mean percentage of 88% (± 18) in cCSC vs. 89% (± 15) in the aCSC (p = 0.3197).
CONCLUSION
We demonstrate that HF and FIPED are OCT biomarkers positively associated with CSC when present at baseline. While both HF and FIPED biomarkers could aid in CSC diagnosis, they could not distinguish between aCSC and cCSC at the first visit. AI-assisted biomarker detection shows promise for reducing invasive imaging needs, but further validation through longitudinal studies is needed
Jak3 Is Involved in Dendritic Cell Maturation and CCR7-Dependent Migration
BACKGROUND: CCR7-mediated signalling is important for dendritic cell maturation and homing to the lymph nodes. We have previously demonstrated that Jak3 participates in the signalling pathway of CCR7 in T lymphocytes. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we used Jak3(-/-) mice to analyze the role of Jak3 in CCR7-mediated dendritic cells migration and function. First, we found no differences in the generation of DCs from Jak3(-/-) bone marrow progenitors, when compared to wild type cells. However, phenotypic analysis of the bone marrow derived DCs obtained from Jak3(-/-) mice showed reduced expression of co-stimulatory molecules compared to wild type (Jak3(+/+)). In addition, when we analyzed the migration of Jak3(-/-) and Jak3(+/+) mature DCs in response to CCL19 and CCL21 chemokines, we found that the absence of Jak3 results in impaired chemotactic responses both in vitro and in vivo. Moreover, lymphocyte proliferation and contact hypersensitivity experiments showed that DC-mediated T lymphocyte activation is reduced in the absence of Jak3. CONCLUSION/SIGNIFICANCE: Altogether, our data provide strong evidence that Jak3 is important for DC maturation, migration and function, through a CCR7-mediated signalling pathway
Interaction of Polysialic Acid with CCL21 Regulates the Migratory Capacity of Human Dendritic Cells
Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs). Immature DCs (iDCs) are situated in the periphery where they capture pathogen. Subsequently, they migrate as mature DCs (mDCs) to draining lymph nodes to activate T cells. CCR7 and CCL21 contribute to the migratory capacity of the DC, but it is not completely understood what molecular requirements are involved. Here we demonstrate that monocyte-derived DCs dramatically change ST8Sia IV expression during maturation, leading to the generation of polysialic acid (polySia). PolySia expression is highly upregulated after 2 days Toll-like receptor-4 (TLR4) triggering. Surprisingly, only immunogenic and not tolerogenic mDCs upregulated polySia expression. Furthermore, we show that polySia expression on DCs is required for CCL21-directed migration, whereby polySia directly captures CCL21. Corresponding to polySia, the expression level of CCR7 is maximal two days after TLR4 triggering. In contrast, although TLR agonists other than LPS induce upregulation of CCR7, they achieve only a moderate polySia expression. In situ we could detect polySia-expressing APCs in the T cell zone of the lymph node and in the deep dermis. Together our results indicate that prolonged TLR4 engagement is required for the generation of polySia-expressing DCs that facilitate CCL21 capture and subsequent CCL21-directed migration
Lymphoid tissue inducer–like cells are an innate source of IL-17 and IL-22
The interleukin (IL) 17 family of cytokines has emerged to be critical for host defense as well as the pathogenesis of autoimmune and autoinflammatory disorders, and serves to link adaptive and innate responses. Recent studies have identified a new subset of T cells that selectively produce IL-17 (Th17 cells; Bettelli, E., T. Korn, and V.K. Kuchroo. 2007. Curr. Opin. Immunol. 19:652–657; Kolls, J.K., and A. Linden. 2004. Immunity. 21:467–476), but the regulation of IL-17 production by innate immune cells is less well understood. We report that in vitro stimulation with IL-23 induced IL-17 production by recombination activating gene (Rag) 2−/− splenocytes but not Rag2−/− common γ chain−/− splenocytes. We found that a major source of IL-17 was CD4+CD3−NK1.1−CD11b−Gr1−CD11c−B220− cells, a phenotype that corresponds to lymphoid tissue inducer–like cells (LTi-like cells), which constitutively expressed the IL-23 receptor, aryl hydrocarbon receptor, and CCR6. In vivo challenge with the yeast cell wall product zymosan rapidly induced IL-17 production in these cells. Genetic deletion of signal transducer and activator of transcription 3 reduced but did not abrogate IL-17 production in LTi-like cells. Thus, it appears that splenic LTi-like cells are a rapid source of IL-17 and IL-22, which might contribute to dynamic organization of secondary lymphoid organ structure or host defense
A chemical sensor based on amicromechanical cantilever array for the identification of gases and vapors
We have built and operated a novel setup for the characterization and identification of gases or vapors based on sequential position readout via a beam-deflection technique from a microfabricated array of eight cantilever-type sensors. Each of the cantilevers can be coated on one side with a different sensor material to detect specific chemical interactions. We demonstrate that disturbances from vibrations and turbulent gas flow can be effectively removed in array sensors by taking difference signals with reference cantilevers. For example, H2 can be detected by its adsorption on a Pt-coated sensor because a change in surface stress causes a static bending of the sensor. The diffusion of various alcohols into polymethylmethacrylate induces resonance frequency shifts in a dynamicmeasuring mode and bending in the static mode, which allows one to distinguish between the various alcohols
- …