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A B S T R A C T

Traffic congestion in urban environment is one of the most critical issue for drivers and city
planners for both environment and efficiency reasons. Traffic lights are one of the main tools
used to regulate traffic by diverting the drivers between different paths. Rational drivers, in
turn, react to the traffic light duration by evaluating their options and, if necessary, by changing
direction in order to reach their destination quicker. In this paper, we introduce a macroscopic
traffic model for urban intersections that incorporates this rational behavior of the drivers.
Then, we exploit it to show that, by providing additional information about the expected red-
time duration to the drivers, one can decrease the amount of congestion in the network and the
overall length of the queues at the intersections. Additionally, we develop a control policy for
the traffic lights that exploits the reaction of the drivers in order to divert them to a different
route to further increase the performances. These claims are supported by extensive numerical
simulations.

1. Introduction

1.1. Motivation

According to the fifth IPCC report on mitigation of climate change (Edenhofer et al., 2014), in 2010 the transport sector was
responsible for approximately the 23% of the entire energy-related CO2 emissions (Edenhofer et al., 2014, Chapter 8). In addition,
‘‘Greenhouse gas (GHG) emissions from the transport sector have more than doubled since 1970, and have increased at a faster
rate than any other energy end-use sector . . . Around 80% of this increase has come from road vehicles’’ (Edenhofer et al., 2014,
Section 8.1, p. 605). Moreover, road traffic is associated with several other environmental, financial, and social problems due to
congestion, delays, and infrastructure maintenance or building. All these negative consequences are exacerbated in presence of
high-density traffic and congestion, and road traffic steadily increases every year (ACEA, 2019; UK Department for Transport,
2019; Sprung et al., 2018). Therefore, rethinking the way traffic is managed is necessary to guarantee a sustainable future for
transportation, and regulating traffic flows efficiently is becoming an ever more important control challenge.
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In this article, we focus on an urban traffic setting and, in particular, on intersection control. For more than 50 years, computer-
ided traffic lights have been the standard tool for controlling intersections (McShane, 1999), and quite an extensive literature
xists on the topic (see Section 1.2). However, to the best of the authors’ knowledge, none of the existing works considers the
ossibility of showing drivers the information on how much time they have to wait, on an average, to cross the intersection. When
uch information is provided, drivers can react to it by adjusting their route accordingly. Hence, showing to drivers the Expected
Red Time Duration (ERTD from now on) may have a considerable impact on congestion, and unveils several control opportunities
unexplored so far. In this article, we aim at introducing such information in the control loop, by showing to the drivers queuing
at the intersection how much they are estimated to wait for a green light. First, we develop a new macroscopic model capturing
the rational reaction of drivers to the ERTD information. The model supports origin–destination pairs and rational planning albeit
being macroscopic. Then, we propose a new control policy that exploits the possibility of showing ERTD and a model of the drivers’
reaction to control the traffic lights with enhanced performance.

Overall, our results suggest that showing the ERTD information to drivers may lead to considerable advantages in terms of
alleviating the congestion also if the traffic-lights control policy is agnostic of it. In addition, if the control policy is designed to
exploit such an additional degree of freedom, then better performance can be achieved.

1.2. Related works

Controlling traffic lights to alleviate congestion or maximize the throughput is a classical problem in transportation research.
Traffic-light control designs based on dynamic programming or informed by control theory have been proposed, for instance,
in Chang and Sun (2004), Zhao et al. (2011), Le et al. (2015), Tettamanti et al. (2014), Fleck et al. (2016), Chiou (2018), Nilsson
and Como (2020) and Liu et al. (2020). See also Papageorgiou et al. (2003) and Eom and Kim (2020) for a broad overview. Heuristic
solutions using machine learning to cope with complex optimization problems and uncertainties have been proposed in Spall and
Chin (1997), Srinivasan et al. (2006), Arel et al. (2010), A and Bhatnagar (2011) and Chu and Wang (2017). See also Araghi et al.
(2015) and Eom and Kim (2020) for a review, and Yau et al. (2017) for a recent survey about the use of reinforcement learning
techniques.

In Varaiya (2013), a ‘‘back-pressure’’ (or ‘‘max-pressure’’) traffic light control algorithm has been proposed with the aim of
stabilizing the queues length at the intersections. Back-pressure algorithms were first introduced as controllers for packet routing in
computer networks with the aim of maximizing the throughput (Tassiulas and Ephremides, 1992; Dai and Lin, 2005). Similarly, the
algorithm proposed in Varaiya (2013) maximizes the vehicles flow at the intersections, and it can be implemented in a decentralized
manner. Other approaches pursuing the same goal in different settings appeared in Gregoire et al. (2015), Wu et al. (2019), Chow
et al. (2020) and Al Islam et al. (2020). Similarly, Bani Younes and Boukerche (2014) and Younis and Moayeri (2017) studied
a method to compute locally optimal traffic-light laws in a dynamic manner using a vehicular network architecture. Typically,
back-pressure approaches guarantee stability of the queues, in the sense that, whenever possible depending on the actual demand,
the mean queue length is guaranteed to be bounded. Here, instead, we do not provide such guarantees, and we rather focus on
optimality with respect to the queues length. While optimality implies stability (whenever a stabilizing controller of the considered
form exists), for implementability reasons we eventually employ approximations that inevitably lead to sub-optimal solutions. Hence,
we lose the stability guarantees implied by optimality. In addition, we underline that modeling the drivers’ reaction to the ERTD
information introduces an additional loop in the model, which consequently becomes a two-level optimization problem, and thus
considerably complicates the analysis. Since our main goal is to promote the importance of showing additional information such as
the ERTD, in this article we prefer to focus on the qualitative effects of this new feature, and to postpone formal guarantees to future
research. Likewise, we do not focus on numerical performance and decentralization, which are again left for future investigations.
None of the cited works, however, contemplates the possibility of showing to the drivers ERTD information or something related to
the time that they are expected to wait at the intersection.

Showing ERTD information opens a number of additional degrees of freedom for the control designer, among which the possibility
of using such information to incentivize drivers to, or prevent them from, choosing a certain route. In this connection, this
work indirectly intersects the literature of road pricing, where tolls and incentivization policies are customarily studied. See, in
particular (Pigou, 1920; Beckmann et al., 1955; Walters, 1961; Yang and Huang, 2005; Small and Verhoef, 2007; De Palma and
Lindsey, 2004) for marginal cost pricing, Verhoef (2002), Yang and Huang (2005) and Small and Verhoef (2007) for second-best
approaches, Verhoef et al. (1997), Kockelman and Kalmanje (2005), Friesz et al. (2008), Yang and Wang (2011) and Lessan and
Fu (2019) for credit and permits schemes, and Daganzo (1995), Viegas (2001) and Wang et al. (2010) for rationing approaches.
Contrary to these works, however, we do not require drivers to pay any toll or to buy any credit or permits, as we only act on traffic
lights.

The closest article to this work is Chai et al. (2017), in which drivers exploit vehicle-to-infrastructure (V2I) communication to
know the status of the network and the controller at all times. With this information, drivers re-plan their route by using a modified
shortest-path algorithm. Simulations employing different heuristic traffic-lights controllers are presented supporting the idea that
providing drivers with more information on the network may have beneficial effects on congestion. Unlike Chai et al. (2017), we do
not require V2I communication, and we do not assume that drivers know the global status of the network or that of the controller.
Rather, drivers gain new information about their expected travel times only when they are in the proximity of the intersection
and receive the information about the expected waiting time. Such information, moreover, only refers to that specific intersection,
and does not give information about the other nodes of the network. Moreover, we model the drivers’ reactions to the displayed
information as an optimization problem in which we trade off rationality, randomness, and the natural inertia that drivers experience
in changing their path. Finally, contrary to Chai et al. (2017), we propose an optimized traffic lights control policy that intrinsically
exploits a model of the drivers’ reaction to make better decisions.
2
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1.3. Contributions

We consider an urban traffic network where each intersection may have multiple lanes, and we consider the problem of optimal
raffic-lights control with the aim of alleviating congestion. More specifically:

1. We add to the traffic lights system a visual indication showing to the queuing drivers ERTD they will have in the foreseeable
future.

2. We model traffic flows by means of a novel macroscopic model that supports origin–destination pairs, finite links capacity,
and rational decision-making for the drivers. Specifically, at each crossing, drivers select their next path optimally according
to an optimization problem trading off rational decisions relative to the expected travel time to their destination, randomness,
and the natural inertia keeping them from changing direction.

3. We evaluate the effect of showing the ERTD numerically through simulations by comparing the performance of an optimal
control policy in presence and absence of such information. We find that showing to the drivers the ERTD always carries
considerable improvement in the control performances.

4. We introduce a novel control policy for the traffic lights that exploits a model of the drivers’ reaction to the new information
to optimize the traffic-light schedule. While the model of the drivers’ reaction used to simulate their behavior is based on
their origin and destination, the model used in the controller is not, since the origin–destination pairs are unknown to the
controller.

5. We validate the proposed controller numerically through simulations. In all the considered cases, the controller performs
better than the previous optimal control scheme. Overall, the numerical analysis suggests that showing to the drivers the
ERTD may carry a considerable advantage in terms of congestion, also if the control scheme is unchanged. Moreover, they also
suggest that embedding a model of the drivers’ reaction in the controller allows a further enhancement of the performance.

.4. Context and paper organization

Section 2 illustrates the innovative model of the traffic network where we characterize the evolution of the traffic flow across the
etwork as a function of the green-light duration at the intersections. In Section 3, we model the drivers’ behavior governing how
hey choose their routes to reach the destination in terms of the solution of two convex optimization problems. It is worth noting
hat Sections 2 and 3 do not yet deal with the control problem, and they are rather long with somewhat cumbersome notations and
efinitions that are nevertheless unavoidable to construct a model that, albeit being macroscopic, supports origin–destination pairs,
ational drivers’ behavior, and allow us to include realistic constraint on the capacity of the intersections and on the finite length
f the queues. Indeed, Sections 2 and 3 are instrumental for the novel control scheme we propose. Moreover, the traffic model that
esults is of interest per se, since it blends the simplicity of a macroscopic model and some details of a microscopic one, and we
onsider it a second important contribution of the article. Section 4 presents the control scheme embedding a model on the drivers’
ehavior. The control action comes from the solution of a bi-level optimization problem originating from the interconnection of the
rivers, which try to minimize on average their travel time, and the controller, which tries to move the traffic equilibrium towards
n efficient regime. Finally, in Section 5, we provide extensive numerical results validating the main conceptual idea of showing
he ERTD information and the proposed control scheme.

. The traffic model

In this section, we derive a macroscopic model of the traffic flow in the network. In particular, in Section 2.1 we introduce the
oad structure and in Section 2.2 we derive the equations governing the traffic dynamics.

.1. The road network

The road network is modeled by a directed graph ( , ), where  is the set of nodes and  ⊆  ×  is the set of edges. Nodes
represent intersections, and each edge represents a single road connecting two different intersections. In particular, if (𝑖, 𝑗) ∈  then
the junctions 𝑖 ∈  and 𝑗 ∈  are connected. Fig. 1(a) shows an example of a road network where each node is represented with
a gray square and each edge with a purple arrow. For each node 𝑗 ∈  , we define a set 𝑗 ⊆  × {𝑗} ×  representing all the
possible ways in which vehicles can cross the junction 𝑗. Specifically, if (𝑖, 𝑗, 𝑓 ) ∈ 𝑗 , then a vehicle that comes from node 𝑖 can go
toward node 𝑓 passing through node 𝑗. For example, each of the green arrows of Fig. 1(a) represents an element of the sets 𝑗 . It
is important to notice that 𝑗 may contain only a subset of the possible paths through 𝑗. For instance, in Fig. 1(a), (𝖧,𝖣,𝖠) ∉ 𝖣. It
is also possible that 𝑗 = ∅ for certain nodes (e.g., nodes 𝖺 and 𝗀 in Fig. 1(a)). We define  ∶=

⋃

𝑗∈ 𝑗 , and call its elements paths.
For each edge (𝑖, 𝑗) ∈  , we define the set

𝑖,𝑗 ∶=
{

𝑘 ∈  |

|

|

(𝑖, 𝑗, 𝑘) ∈ 
}

⊆  ,

containing all the possible nodes 𝑘 that are reachable directly from 𝑗 by vehicles coming from node 𝑖. Similarly, for each edge
(𝑖, 𝑗) ∈  , we define

𝑖,𝑗 ∶=
{

𝑘 ∈  |

|

|

(𝑘, 𝑖, 𝑗) ∈ 
}

⊆ 
3

as the set of all the possible nodes 𝑘 from which vehicles can drive to node 𝑗 passing through 𝑖.
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Fig. 1. Two examples of networks of urban intersections. The intersections of the network are represented by gray rectangles with their name written in red
in the center. The purple arrows represent the flow direction of the roads that connect the various nodes. Finally, the green arrows show the various ways a
vehicle can cross the intersection.

We define  ⊂  as the set of all the entry nodes of the road network. Namely, the nodes inside  are those connected to the
outside of the considered road network, from which vehicles can enter. For each entry node 𝑖 ∈ , 𝑖 = ∅, and there exists a unique
edge (𝑗, 𝑓 ) ∈  such that (𝑖, 𝑗, 𝑓 ) ∈  . With 𝑖 ∈  and (𝑖, 𝑗, 𝑓 ) ∈  , we define 𝐵(𝑖) ∶= (𝑖, 𝑗, 𝑓 ), which we call the entry path of the input
ode 𝑖. For example, 𝖺 and 𝗀 are the entry nodes of the road network of Fig. 1(a). Additionally, 𝐵(𝖺) = (𝖺,𝖠,𝖣) and 𝐵(𝗀) = (𝗀,𝖦,𝖧)

are their entry paths. Then, we define the set of all the entry paths as

 ∶= 𝐵() =
{

(𝑖, 𝑗, 𝑘) ∈  |

|

|

𝑖 ∈ 
}

⊆  .

Finally, we let 𝑛𝑣 be the cardinality of  , 𝑛𝑝 be the cardinality of  and 𝑛𝑏 be the cardinality of .

2.2. The traffic dynamics

In this section, we derive a discrete-time model of the traffic dynamics. At each time instant, vehicles enter the network from
the entry nodes  and move along the road network toward a specific node representing their final destination. When a vehicle
reaches its destination, it leaves the network. We assume that, with each path (𝑖, 𝑗, 𝑓 ) ∈  , there is associated a unique traffic light
regulating the traffic on it. Hence, with each path there is associated a unique queue of vehicles waiting to cross the intersection.
With slight abuse of notation, we use (𝑖, 𝑗, 𝑓 ) also to denote such a queue. We denote by 𝑁max

𝑖,𝑗,𝑓 ∈ (0,∞] the maximum length of the
queue (𝑖, 𝑗, 𝑓 ). We set 𝑁max

𝑖,𝑗,𝑓 = ∞ for every entry path (𝑖, 𝑗, 𝑓 ) ∈ . In this way, vehicles can enter the network also if all the queues
are completely full. This is important as it guarantees that the vehicles influx is exogenous. The (unbounded) queues of the entry
paths can be thus interpreted as queues of vehicles that want to enter the network, but that do not have the space to do it because
of the traffic inside.

The model evolves in discrete time, with constant sampling time ℎ ∈ (0,+∞). In particular, the 𝑡th interval is denoted by
𝑇𝑡 ∶= [ℎ𝑡, ℎ(𝑡 + 1)). As a simplifying assumption, we suppose that, given a time instant 𝑡 ∈ N and a path (𝑖, 𝑗, 𝑓 ) ∈  , all the vehicles
that can depart during the time interval 𝑇𝑡 from the queue (𝑖, 𝑗, 𝑓 ) depart at the start of the time interval 𝑇𝑡 and arrive at the next
queue at the end of the time interval 𝑇𝑡 or, equivalently, at the start of the subsequent time interval 𝑇𝑡+1. This assumption implies that
the discretization time ℎ is also the time needed to travel along an entire edge. We stress that this is a rather standard assumption
widely used in this type of models (see, e.g., Ghosh et al. (2021), Chang and Sun (2004), Zhao et al. (2011), Le et al. (2015),
Tettamanti et al. (2014), Gregoire et al. (2015), Varaiya (2013), Wu et al. (2019) and Miller (1963)). Moreover, this assumption is
particularly motivated in our context because, in an urban scenario, edges are typically short and similar, and the traffic speed is
small and homogeneous. Additionally, it is possible to model an edge with a larger travel time by splitting it into several edges. For
example, in Fig. 1(a), the nodes 𝖤, 𝖡, 𝖢, and 𝖥 are used to create a longer road connecting nodes 𝖣 and 𝖩.

Given a path (𝑖, 𝑗, 𝑓 ) ∈  , a node 𝑞 ∈  , and a time 𝑡 ∈ N, we define the following three quantities:

• The queue length 𝑁 𝑡
𝑖,𝑗,𝑓 ,𝑞 ∈ [0, 𝑁max

𝑖,𝑗,𝑓 ] is the amount of vehicles waiting in the queue (𝑖, 𝑗, 𝑓 ) at the start of the time interval 𝑇𝑡
that have 𝑞 as final destination.
4
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• The outgoing flow 𝑀 𝑡
𝑖,𝑗,𝑓 ,𝑞 ∈ [0,∞) is the amount of vehicles that depart from the queue (𝑖, 𝑗, 𝑓 ) at the start of the time interval

𝑇𝑡 and that have 𝑞 as final destination.
• The inbound flow 𝛬𝑡

𝑖,𝑗,𝑓 ,𝑞 ∈ [0,∞) is the amount of vehicles that arrive at the queue (𝑖, 𝑗, 𝑓 ) at the end of the time interval 𝑇𝑡
and that have 𝑞 as final destination.

We allow the possibility that drivers decide to change lane or direction once they have joined a queue. We assume that all these
changes take place at the start of the time intervals. Given a path (𝑖, 𝑗, 𝑓 ) ∈  , a node 𝑞 ∈  , and a time 𝑡 ∈ N, we define the post-
hange queue length �̃� 𝑡

𝑖,𝑗,𝑓 ,𝑞 ∈ [0, 𝑁max
𝑖,𝑗,𝑓 ] as the amount of vehicles waiting in the queue (𝑖, 𝑗, 𝑓 ) with destination 𝑞 after all vehicles

ave finalized their lane changing. If no driver in (𝑖, 𝑗, 𝑓 ) decides to change direction, then the post-change queue length is the same
s the queue length, i.e., �̃� 𝑡

𝑖,𝑗,𝑓 ,𝑞 = 𝑁 𝑡
𝑖,𝑗,𝑓 ,𝑞 , for all 𝑞 ∈  . The values of �̃� 𝑡

𝑖,𝑗,𝑓 ,𝑞 are computed by solving an optimization problem
aking into account: (i) the waiting time perceived by the drivers, (ii) their final destination, (iii) the network structure, and (iv)
he maximum queue’s lengths. This optimization problem and its solution are discussed later in Section 3.2. We stress that 𝑁 𝑡

𝑖,𝑗,𝑓 ,𝑞 ,
̃ 𝑡
𝑖,𝑗,𝑓 ,𝑞 , 𝑀

𝑡
𝑖,𝑗,𝑓 ,𝑞 , and 𝛬𝑡

𝑖,𝑗,𝑓 ,𝑞 are real numbers.
For each (𝑖, 𝑗, 𝑓 ) ∈  and 𝑡 ∈ N, we define the following ‘‘aggregated’’ quantities

𝑁 𝑡
𝑖,𝑗,𝑓 ∶=

∑

𝑞∈
𝑁 𝑡

𝑖,𝑗,𝑓 ,𝑞 , �̃� 𝑡
𝑖,𝑗,𝑓 ∶=

∑

𝑞∈
�̃� 𝑡

𝑖,𝑗,𝑓 ,𝑞 , 𝑀 𝑡
𝑖,𝑗,𝑓 ∶=

∑

𝑞∈
𝑀 𝑡

𝑖,𝑗,𝑓 ,𝑞 , 𝛬𝑡
𝑖,𝑗,𝑓 ∶=

∑

𝑞∈
𝛬𝑡
𝑖,𝑗,𝑓 ,𝑞 .

Every traffic light alternates a green and a red light in each time interval. Given (𝑖, 𝑗, 𝑓 ) ∈  and 𝑡 ∈ N, we define 𝑔𝑡𝑖,𝑗,𝑓 as
the duty cycle of the traffic light operating at (𝑖, 𝑗, 𝑓 ). Namely, 𝑔𝑡𝑖,𝑗,𝑓 is the fraction of time in which the light is green in the time
interval 𝑇𝑡. Therefore, a vehicle in the path (𝑖, 𝑗, 𝑓 ) is allowed to cross for ℎ𝑔𝑡𝑖,𝑗,𝑓 time units during the time interval 𝑇𝑡, and it is
blocked for the rest of the interval. To avoid situations where a path is completely blocked, the green light duration is supposed to
be lower-bounded by a common bound 𝑔min ∈ (0, 1). Hence, 𝑔𝑡𝑖,𝑗,𝑓 ∈ [𝑔min, 1] for all 𝑡 ∈ N and all (𝑖, 𝑗, 𝑓 ) ∈  . As explained in detail
in Section 4, at each 𝑡 ∈ N, the tuple 𝑔𝑡 = (𝑔𝑡𝑖,𝑗,𝑓 )(𝑖,𝑗,𝑓 )∈ is the control variable that a controller decides in order to manage traffic
and influence the drivers’ decision.

Given a path (𝑖, 𝑗, 𝑓 ) ∈  , a node 𝑞 ∈  and a time 𝑡 ∈ N, the queue length at the end of the time interval 𝑇𝑡 and at the start of
the time interval 𝑇𝑡+1 is obtained by adding the inbound flow 𝛬𝑡

𝑖,𝑗,𝑓 ,𝑞 and removing the outgoing flow 𝑀 𝑡
𝑖,𝑗,𝑓 ,𝑞 from the post-change

queue lengths �̃� 𝑡
𝑖,𝑗,𝑓 ,𝑞 . Therefore, we have

𝑁 𝑡+1
𝑖,𝑗,𝑓 ,𝑞 = �̃� 𝑡

𝑖,𝑗,𝑓 ,𝑞 + 𝛬𝑡
𝑖,𝑗,𝑓 ,𝑞 −𝑀 𝑡

𝑖,𝑗,𝑓 ,𝑞 . (1)

Next, we define the inbound flows. To this aim, we first consider a non-entry path (𝑖, 𝑗, 𝑓 ) ∈  ⧵ . Given a node 𝑞 ∈  and a
time 𝑡 ∈ N, we define

𝛬𝑡
𝑖,𝑗,𝑓 ,𝑞 = 𝛼𝑖,𝑗,𝑓 ,𝑞

∑

𝑘∈𝑖,𝑗

𝑀 𝑡
𝑘,𝑖,𝑗,𝑞 .

In the previous equation, the summation term gives the amount of vehicles that depart from the downstream nodes at the start
of the time interval 𝑇𝑡 and travel along the edge (𝑖, 𝑗) with final destination 𝑞. The term 𝛼𝑖,𝑗,𝑓 ,𝑞 ∈ [0, 1], instead, is the fraction of
vehicles with final destination 𝑞 joining the queue (𝑖, 𝑗, 𝑓 ). The value of the coefficients 𝛼𝑖,𝑗,𝑓 ,𝑞 is computed by solving an optimization
problem that takes into account the final destination of the drivers and the network structure. This algorithm is discussed in detail
later in Section 3.1. Since the vehicles that reach their destination are supposed to leave the network, if 𝑗 = 𝑞, we have 𝛼𝑖,𝑗,𝑓 ,𝑞 = 0.

We now consider the entry paths. If (𝑖, 𝑗, 𝑓 ) ∈ , then 𝑖 = ∅. Hence, 𝑖,𝑗 = ∅. Therefore, there is no flow of vehicles arriving
toward the path (𝑖, 𝑗, 𝑓 ). Instead, we define the incoming vehicles at 𝑖 ∈  during the interval 𝑇𝑡 in terms of an exogenous variable
(𝜁 𝑡𝑖,𝑞)𝑞∈ , where each term 𝜁 𝑡𝑖,𝑞 equals the amount of vehicles entering the network at 𝑖 with destination 𝑞 ∈  . Hence, we set
𝛬𝑡
𝑖,𝑗,𝑓 ,𝑞 = 𝜁 𝑡𝑖,𝑞 . In summary, we have

𝛬𝑡
𝑖,𝑗,𝑓 ,𝑞 =

⎧

⎪

⎨

⎪

⎩

𝛼𝑖,𝑗,𝑓 ,𝑞
∑

𝑘∈𝑖,𝑗

𝑀 𝑡
𝑘,𝑖,𝑗,𝑞 If 𝑖 ∈  ⧵ ,

𝜁 𝑡𝑖,𝑞 If 𝑖 ∈ .
(2)

The value of the outgoing flows are defined as the solution of an optimization problem that searches the maximum feasible
outgoing flow for each queue and destination. Here, we are assuming that the outgoing flows are always equal to the maximum
feasible value and, therefore, if a driver has time to depart, it does.

A value is feasible if it satisfies the following constraints:

• All the outgoing flows have to be non-negative. Hence,

𝑀 𝑡
𝑖,𝑗,𝑓 ,𝑞 ≥ 0, ∀(𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑞 ∈  . (3)

• Only the vehicles that are queuing at the start of the time interval 𝑇𝑡 can cross the path. Thus,

𝑀 𝑡 ≤ �̃� 𝑡 , ∀(𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑞 ∈  . (4)
5

𝑖,𝑗,𝑓 ,𝑞 𝑖,𝑗,𝑓 ,𝑞



Transportation Research Part C 145 (2022) 103910M. Scandella et al.

n

• Every link has a maximum capacity 𝑣𝑖,𝑗,𝑓 ∈ (0,+∞), representing the maximum amount of vehicles that can cross (𝑖, 𝑗, 𝑓 ) in any
time interval if the traffic light is always green, and an effective capacity given by 𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓 for each 𝑡 ∈ N, which takes into
account the green-light duration. Then, assuming that the vehicles with different destinations are distributed evenly in the
queue, the effective capacity is subdivided among the possible destinations in the same way as the post-change queue length.
Therefore,

𝑀 𝑡
𝑖,𝑗,𝑓 ,𝑞 ≤

�̃� 𝑡
𝑖,𝑗,𝑓 ,𝑞

�̃� 𝑡
𝑖,𝑗,𝑓

𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓 , ∀(𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑞 ∈  . (5)

• The queue length at the start of the next time interval 𝑇𝑡+1 cannot exceed the maximum queue length. Hence,

𝑁 𝑡+1
𝑖,𝑗,𝑓 =

∑

𝑞∈
𝑁 𝑡+1

𝑖,𝑗,𝑓 ,𝑞 ≤ 𝑁max
𝑖,𝑗,𝑓 , ∀(𝑖, 𝑗, 𝑓 ) ∈  ⧵ , (6)

where the relation between the queue lengths and the outgoing flows is defined in (1) and (2). Notice that this constraint is
not defined for the entry paths because, in these cases, 𝑁max

𝑖,𝑗,𝑓 = ∞. By excluding the entry paths, this constraint can always be
satisfied because the vehicles can accumulate in the entry paths of the network if the downstream paths are congested.

Therefore, given 𝑡 ∈ N, the value of the outgoing flows is defined as the solution of the optimization problem

M (𝑡) ∶

⎧

⎪

⎨

⎪

⎩

max
∑

(𝑖,𝑗,𝑓 )∈

∑

𝑞∈
𝑀 𝑡

𝑖,𝑗,𝑓 ,𝑞

Subject to (1), (2), (3), (4), (5), and (6).
(7)

in the optimization variables (𝑀 𝑡
𝑖,𝑗,𝑓 ,𝑞)(𝑖,𝑗,𝑓 )∈ ,𝑞∈

. This is a linear optimization problem that can be solved using a suitable solver.
This definition of the outgoing flows, together with (1) and (2), describes the time evolution of the traffic flow in the network.

3. Models of drivers’ behavior

Drivers’ decisions enter the traffic model presented in the previous Section 2 in two points: (i) In the definition of the coefficients
𝛼𝑖,𝑗,𝑓 ,𝑞 in (2), and (ii) in the definition of the post-change queue length variables �̃� 𝑡

𝑖,𝑗,𝑓 ,𝑞 in (1). Conceptually, the determination of
𝛼𝑖,𝑗,𝑓 ,𝑞 and �̃� 𝑡

𝑖,𝑗,𝑓 ,𝑞 are different tasks in that the former comes from a prior planning that only depends on the drivers’ origin–
destination pairs and the topology of the road network, while the latter also depends on real-time traffic data and on the value of
the duty cycles 𝑔𝑡𝑖,𝑗,𝑓 decided by the controller. Hence, we treat the two tasks separately in the forthcoming sections.

3.1. Drivers’ a priori route selection

In this section, we detail the procedure used to define the coefficients 𝛼 =
(

𝛼𝑖,𝑗,𝑓 ,𝑞
)

(𝑖,𝑗,𝑓 )∈ ,𝑞∈ . These coefficients are determined
in terms of the drivers’ origin–destination pairs, and are tuned on an expected nominal value for the traffic lights, fixed a priori and
independent of the control policy actually implemented. Hence, 𝛼 represents the subdivision of the traffic flow at each intersection
corresponding to an a priori optimistic plan, where each driver selects the shortest path to its destination and does not take traffic
into account.

As a first step, we derive the expected time necessary to reach a given destination from a certain queue. When a vehicle moves
along the network, it follows a sequence of consecutive paths, here formalized in terms of routes. A route of length 𝑛 ∈ N ⧵ {0} is a
tuple of paths ((𝑖𝑧, 𝑗𝑧, 𝑘𝑧))

𝑛
𝑧=1 ∈ 𝑛 such that, either 𝑛 = 1, or 𝑖𝑧 = 𝑗𝑧−1 and 𝑗𝑧 = 𝑘𝑧−1 for all 𝑧 ∈ {2,… , 𝑛}. We let 𝑛 ⊂ 𝑛 be the set

of all the routes of length 𝑛, and  =
⋃+∞

𝑛=1 𝑛 be the set of all routes. We identify length-1 routes with their only element, e.g., by
writing (𝑖, 𝑗, 𝑘) in place of ((𝑖, 𝑗, 𝑘)). Moreover, with 𝑟 ∈ 𝑛 and 𝑝 ∈ 𝑚, we denote by 𝑟 ⊕ 𝑝 ∈ 𝑛+𝑚 their concatenation whenever it
is well-defined. Given a route 𝑟 ∈ , we denote by 𝓁(𝑟) ∈ N⧵{0} its length. The time needed to follow a route 𝑟 = ((𝑖𝑧, 𝑗𝑧, 𝑘𝑧))

𝑛
𝑧=1 ∈ 

without traffic is given by

𝜏 (𝑟) ∶=
𝓁(𝑟)
∑

𝑧=1
ℎ +

𝓁(𝑟)
∑

𝑧=1

ℎ
𝑣𝑖𝑧 ,𝑗𝑧 ,𝑘𝑧𝛾𝑖𝑧 ,𝑗𝑧 ,𝑘𝑧

= ℎ

(

𝓁 (𝑟) +
𝓁(𝑟)
∑

𝑧=1

1
𝑣𝑖𝑧 ,𝑗𝑧 ,𝑘𝑧𝛾𝑖𝑧 ,𝑗𝑧 ,𝑘𝑧

)

, (8)

in which:

• The first summation term is the time needed to cross all the edges in the route, and it is based on the assumption that the
time needed to travel one edge is equal to the discretization step ℎ (see Section 2).

• The second summation is the time needed to cross all the junctions in the route assuming that the green light duration of the
traffic light at junction (𝑖, 𝑗, 𝑓 ) ∈  equals 𝛾𝑖,𝑗,𝑓 , where 𝛾𝑖,𝑗,𝑓 ∈ (0, 1) is some value that drivers expect, a priori, for the duty
cycle 𝑔𝑡𝑖,𝑗,𝑓 .

The formula (8) builds on the assumption that drivers know the topology of the network and that they have a reasonable guess 𝛾𝑖,𝑗,𝑓
for the duty cycles. In particular, 𝛾𝑖,𝑗,𝑓 is the average value drivers assume for duty cycles when they have no information about
the status of the network. For example, looking at the network in Fig. 1(a), we may take 𝛾𝖤,𝖡,𝖢 = 𝛾𝖢,𝖡,𝖤 = 1, since all the paths in
6

ode 𝖡 are non-conflicting, and thus it is licit to assume that drivers presume they can always cross. Instead, it is reasonable to take
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𝛾𝑖,𝑗,𝑓 = 1∕3, for all (𝑖, 𝑗, 𝑓 ) ∈ 𝖨. In fact, the crossing at 𝖨 has three conflicting phases, and it is licit to assume drivers assign to them
the same duration a priori.

With (𝑖, 𝑗) ∈  and 𝑞 ∈  , we define the set

𝛷𝑖,𝑗,𝑞 ∶=
{

((𝑖𝑧, 𝑗𝑧, 𝑘𝑧))
𝑛
𝑧=1

|

|

|

𝑖1 = 𝑖 ∧ 𝑗1 = 𝑗 ∧ 𝑘𝑛 = 𝑞
}

⊆ ,

which contains all the routes connecting the edge (𝑖, 𝑗) to the destination 𝑞. Notice that 𝛷𝑖,𝑗,𝑞 = ∅ if and only if it is not possible to
reach the destination 𝑞 from the edge (𝑖, 𝑗). With the previous definitions in mind, we define the optimal route from an edge (𝑖, 𝑗) ∈ 
to a node 𝑞 ∈  as2

𝜑𝑖,𝑗,𝑞 ∶= argmin
𝑟∈𝛷𝑖,𝑗,𝑞

{𝜏 (𝑟)} ∈ . (9)

Consider now a vehicle with final destination 𝑞 ∈  that is traveling on the edge (𝑖, 𝑗) ∈  and needs to choose the next queue
to join among the possible ones {(𝑖, 𝑗, 𝑘)}𝑘∈𝑖,𝑗

. We can assign a weight to each possible decision depending on the time gain or loss
that it leads to. In particular, we define the weights

𝜌𝑖,𝑗,𝑓 ,𝑞 ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 If 𝑗 = 𝑞
𝜏
(

(𝑖, 𝑗, 𝑓 )
)

If 𝑗 ≠ 𝑞 ∧ 𝑓 = 𝑞
+∞ If 𝑗 ≠ 𝑞 ∧ 𝑓 ≠ 𝑞 ∧𝛷𝑗,𝑓 ,𝑞 = ∅
𝜏
(

(𝑖, 𝑗, 𝑓 )⊕𝜑𝑗,𝑓 ,𝑞
)

If 𝑗 ≠ 𝑞 ∧ 𝑓 ≠ 𝑞 ∧𝛷𝑗,𝑓 ,𝑞 ≠ ∅.

(10)

The third case of (10) happens when it is not possible to reach the destination 𝑞 by selecting the path (𝑖, 𝑗, 𝑓 ). We stress that 𝜌𝑖,𝑗,𝑓 ,𝑞 is
an element of the extended real numbers because it can be equal to +∞. For the remainder of the manuscript, we set by convention
that 0(±∞) = 0.

Higher weights correspond to worse decisions. However, a completely rational flow is a rather strong assumption. This motivates
defining the coefficients 𝛼 =

(

𝛼𝑖,𝑗,𝑓 ,𝑞
)

(𝑖,𝑗,𝑓 )∈ ,𝑞∈ as the ones minimizing the following the cost function

𝐽𝑎 (𝛼) ∶= 𝜇
∑

(𝑖,𝑗,𝑓 )∈

∑

𝑞∈
𝛼𝑖,𝑗,𝑓 ,𝑞 𝜌𝑖,𝑗,𝑓 ,𝑞 +

∑

(𝑖,𝑗,𝑓 )∈

∑

𝑞∈
𝛼𝑖,𝑗,𝑓 ,𝑞 log 𝛼𝑖,𝑗,𝑓 ,𝑞 , (11)

representing a compromise between rationality and randomness. Specifically, the cost function 𝐽𝑎 is the sum of two terms. The
first weights the time needed to reach the destination, where 𝜇 ∈ (0,+∞) is a design parameter representing the drivers’ value
of time, i.e., the importance that they give to the time needed to reach their destination. Minimizing this term leads to the most
rational decision in terms of value of time. The second term is a negative entropy term. As explained later, minimizing this implies
maximizing dispersion, and it is thus associated with irrational behavior.

The negative entropy term is common in the context of learning theory, where it is used as a regularization term (Chen et al.,
2016; Mertikopoulos et al., 2018; Neu et al., 2017). Here, it is used to model the fact that not all drivers perfectly plan their route in
order to obtain the fastest travel time. For example, some vehicles may have only incomplete information about the road structure,
may be distracted at the time of decision, or may have other objectives than minimizing the travel time. The parameter 𝜇 enters as
a multiplier in the first term of (11). Hence, it can be used to adjust the trade-off between the rational and irrational behavior.

Since not all possible values of 𝛼 are feasible, the optimization problem is constrained. In particular, a value of 𝛼 is feasible if
and only if it satisfies the following conditions:

• The coefficients need to be non-negative. Hence,

𝛼𝑖,𝑗,𝑓 ,𝑞 ≥ 0, ∀(𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑞 ∈  . (12)

• Vehicles can only leave the network at their destination, and can enter only at the entry nodes. Thus,
∑

𝑓∈𝑖,𝑗

𝛼𝑖,𝑗,𝑓 ,𝑞 = 1, ∀(𝑖, 𝑗) ∈  , ∀𝑞 ∈  ⧵ {𝑗}, (13)

which expresses the conservation of the flow of vehicles with destination 𝑞 at nodes 𝑗 ≠ 𝑞.
• Finally, vehicles must leave the network once at the destination node. Hence,

𝛼𝑖,𝑗,𝑓 ,𝑗 = 0, ∀(𝑖, 𝑗, 𝑓 ) ∈  . (14)

Therefore, the value of 𝛼 is defined as the solution of the optimization problem

A ∶

{

min 𝐽𝑎 (𝛼)
Subject to (12), (13), and (14).

(15)

It turns out that A can be solved in closed form, as stated by Lemma 1 below (the proof of Lemma 1 is in Appendix A).

2 For simplicity, we suppose that the set of minimizers in (9) is a singleton. Otherwise, we can define the quantity 𝜑 as an arbitrary element of it.
7

𝑖,𝑗,𝑞
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3

t
b
T
t

Lemma 1. Problem A has a unique solution given by

𝛼𝑖,𝑗,𝑓 ,𝑞 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 If 𝑗 = 𝑞
exp

(

−𝜇𝜌𝑖,𝑗,𝑓 ,𝑞
)

∑

𝑘∈𝑖,𝑗

exp
(

−𝜇𝜌𝑖,𝑗,𝑘,𝑞
)

If 𝑗 ≠ 𝑞, (16)

for all (𝑖, 𝑗, 𝑓 ) ∈  and all 𝑞 ∈  .

We remark that 𝛼𝑖,𝑗,𝑓 ,𝑞 = 0 whenever 𝛷𝑗,𝑓 ,𝑞 = ∅ because, in this case, 𝜌𝑖,𝑗,𝑓 ,𝑞 = +∞. This makes sure that vehicles with destination
𝑞 cannot end up in roads from which 𝑞 is not reachable.

.2. The driver’s reaction to the waiting time

In this section, we detail a model of the drivers’ reaction to the displayed waiting times and to the congestion at the junctions,
hereby defining a procedure to compute the post-change queue lengths (�̃� 𝑡

𝑖,𝑗,𝑓 ,𝑞)(𝑖,𝑗,𝑓 )∈ ,𝑞∈ at each time 𝑡. The waiting time perceived
y a vehicle in a queue depends on its position in the queue and on the information it has about the duty cycle of the traffic light.
he duty cycles 𝑔𝑡𝑖,𝑗,𝑓 , in particular, may be either known to the drivers, if such information is displayed as we propose, or not, if
his feature is disabled. To capture both cases, given (𝑖, 𝑗, 𝑓 ) ∈  and 𝑡 ∈ N, we define the perceived duty cycle as

𝑔𝑡𝑖,𝑗,𝑓 ∶=

{

𝑔𝑡𝑖,𝑗,𝑓 If the drivers know 𝑔𝑡𝑖,𝑗,𝑓
𝛾𝑖,𝑗,𝑓 Otherwise.

Hence, if the traffic light on path (𝑖, 𝑗, 𝑓 ) displays the information about the duty cycle, then the drivers in the queue (𝑖, 𝑗, 𝑓 ) know
𝑔𝑡𝑖,𝑗,𝑓 , and they can use it to make an informed decision. Otherwise, they rely on the value 𝛾𝑖,𝑗,𝑓 expected a priori (see Section 3.1).

By using the perceived duty cycle 𝑔𝑡𝑖,𝑗,𝑓 , it is possible to define the perceived waiting time for a vehicle in position 𝑥 ∈ [0, 𝑁 𝑡
𝑖,𝑗,𝑓 ]

in the queue (𝑖, 𝑗, 𝑓 ) ∈  at the start of the time interval 𝑇𝑡 as

�̂�𝑡
𝑖,𝑗,𝑓 (𝑥) ∶=

ℎ𝑥

𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓
, (17)

where we assume that 𝑥 = 0 is the front of the queue and 𝑥 = 𝑁 𝑡
𝑖,𝑗,𝑓 the back. The perceived traveling time for a vehicle with destination

𝑞 ∈  is then defined as the sum �̂�𝑡
𝑖,𝑗,𝑓 + 𝜌𝑖,𝑗,𝑓 ,𝑞 of the expected a priori crossing time 𝜌𝑖,𝑗,𝑓 ,𝑞 , defined in (10), and the perceived

waiting time in the queue �̂�𝑡
𝑖,𝑗,𝑓 .

Consider a vehicle with final destination 𝑞 ∈  that is in position 𝑥 ∈ [0, 𝑁 𝑡
𝑖,𝑗,𝑘] in the queue (𝑖, 𝑗, 𝑘) ∈  at the start of the time

interval 𝑇𝑡. The vehicle must choose whether to stay in the same queue, or to change lane to one among the possible alternatives
{(𝑖, 𝑗, 𝑓 )}𝑓∈𝑖,𝑗

. By following the same reasoning used in Section 3.1, we assign a weight to each possible decision. In particular, for
each possible alternative queue (𝑖, 𝑗, 𝑓 ), we define the weight

�̂�𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑞 (𝑥) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜉
(

�̂�𝑡
𝑖,𝑗,𝑓 (𝑥) + 𝜌𝑖,𝑗,𝑓 ,𝑞

)

− 𝜎 If 𝑘 = 𝑓

𝜉
(

�̂�𝑡
𝑖,𝑗,𝑓 (𝑥 + 𝜂) + 𝜌𝑖,𝑗,𝑓 ,𝑞

)

If 𝑘 ≠ 𝑓 ∧ 𝑥 + 𝜂 < 𝑁 𝑡
𝑖,𝑗,𝑓

𝜉
(

�̂�𝑡
𝑖,𝑗,𝑓

(

𝑁 𝑡
𝑖,𝑗,𝑓

)

+ 𝜌𝑖,𝑗,𝑓 ,𝑞
)

If 𝑘 ≠ 𝑓 ∧ 𝑥 + 𝜂 ≥ 𝑁 𝑡
𝑖,𝑗,𝑓 ,

(18)

in which 𝜉, 𝜎, 𝜂 ∈ [0,+∞) are parameters to be specified. The first case, in which 𝑘 = 𝑓 , corresponds to the decision not to change
queue. This term is the sum of a rational term, given by the perceived traveling time associated with the present queue (scaled by
𝜉), and a negative term −𝜎 modeling the inertial preference toward the decision of not changing lane. The other two cases apply to
the lanes different from the present one. Here, we assume that a vehicle that changes queue cannot maintain its position 𝑥 in the
new queue, but rather it joins the new queue in position 𝑥 + 𝜂. Therefore, in the second case, the weight is given by the perceived
traveling time in the selected queue in position 𝑥 + 𝜂, weighted by 𝜉. In the third case, instead, the selected queue is shorter than
the penalized position 𝑥 + 𝜂. Thus, the vehicle joins the new queue at the end.

Since the weights depend on the position of the vehicle in the queue, in order to ease their computation, we subdivide the queue
into 𝑛 sections of equal length. In particular, we denote the 𝑧th section, 𝑧 ∈ {1,… , 𝑛}, of the queue (𝑖, 𝑗, 𝑘) ∈  by

𝑆𝑡
𝑖,𝑗,𝑘,𝑧 ∶=

[

(𝑧 − 1)
𝑁 𝑡

𝑖,𝑗,𝑘

𝑛
, 𝑧

𝑁 𝑡
𝑖,𝑗,𝑘

𝑛

)

. (19)
8
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𝑞

I
p
o

A

c

T

(
r
t
t
a

Then, given 𝑞 ∈  and 𝑓 ∈ 𝑖,𝑗 , we define �̂�𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 as the mean weight among the vehicles with destination 𝑞 that are in the queue

section 𝑆𝑡
𝑖,𝑗,𝑘,𝑧. In particular, we have

�̂�𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 ∶=

1

𝑁 𝑡
𝑖,𝑗,𝑘

𝑛

∫𝑆𝑡
𝑖,𝑗,𝑘,𝑧

�̂�𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑞 (𝑥) 𝑑𝑥

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜉ℎ

𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓

𝑁 𝑡
𝑖,𝑗,𝑘 (2𝑧 − 1)

2𝑛
+ 𝜉𝜌𝑖,𝑗,𝑓 ,𝑞 − 𝜎 If 𝑓 = 𝑘

𝜉ℎ

𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓

(

𝑁 𝑡
𝑖,𝑗,𝑘 (2𝑧 − 1)

2𝑛
+ 𝜂

)

+ 𝜉𝜌𝑖,𝑗,𝑓 ,𝑞 If 𝑓 ≠ 𝑘 ∧ 𝑧
𝑁 𝑡

𝑖,𝑗,𝑘

𝑛
+ 𝜂 < 𝑁 𝑡

𝑖,𝑗,𝑓

𝜉ℎ

𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓
𝑁 𝑡

𝑖,𝑗,𝑓 + 𝜉𝜌𝑖,𝑗,𝑓 ,𝑞 If 𝑓 ≠ 𝑘 ∧ (𝑧 − 1)
𝑁 𝑡

𝑖,𝑗,𝑘

𝑛
+ 𝜂 ≥ 𝑁 𝑡

𝑖,𝑗,𝑓

𝜉ℎ

𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓

⎛

⎜

⎜

⎜

⎝

𝑧
(

𝑁 𝑡
𝑖,𝑗,𝑓 − 𝜂

)

+ 𝜂 −
(𝑧 − 1)2 𝑁 𝑡

𝑖,𝑗,𝑘

2𝑛
−

𝑛
(

𝑁 𝑡
𝑖,𝑗,𝑓 − 𝜂

)2

2𝑁 𝑡
𝑖,𝑗,𝑘

⎞

⎟

⎟

⎟

⎠

+ 𝜉𝜌𝑖,𝑗,𝑓 ,𝑞 Otherwise.

Now, if we denote by 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 ∈ [0, 1] the fraction of vehicles in section 𝑆𝑡
𝑖,𝑗,𝑘,𝑧, (𝑖, 𝑗, 𝑘) ∈  and 𝑧 ∈ {1,… , 𝑛}, with destination

∈  that decide to join the queue (𝑖, 𝑗, 𝑓 ) at time 𝑡, for some 𝑓 ∈ 𝑖,𝑗 , the post-change queue lengths are given as follows

�̃� 𝑡
𝑖,𝑗,𝑓 ,𝑞 =

∑

𝑘∈𝑖,𝑗

𝑛
∑

𝑧=1
𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧

𝑁 𝑡
𝑖,𝑗,𝑘,𝑞

𝑛
=

1
𝑛

∑

𝑘∈𝑖,𝑗

𝑛
∑

𝑧=1
𝑁 𝑡

𝑖,𝑗,𝑘,𝑞𝛽
𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧, (20a)

�̃� 𝑡
𝑖,𝑗,𝑓 =

∑

𝑞∈
�̃� 𝑡

𝑖,𝑗,𝑘,𝑞 =
1
𝑛
∑

𝑞∈

∑

𝑘∈𝑖,𝑗

𝑛
∑

𝑧=1
𝑁 𝑡

𝑖,𝑗,𝑘,𝑞𝛽
𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧. (20b)

n the remainder of the section, we define the values of the coefficients 𝛽𝑡 =
(

𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧
)

(𝑖,𝑗,𝑘)∈ ,𝑓∈𝑖,𝑗 ,𝑞∈ ,𝑧∈{1,…,𝑛} on the basis of the
revious definitions concerning the expected traveling times. In particular, by following the same line of reasoning of the definition
f the coefficients 𝛼 in Section 3.1, we choose 𝛽𝑡 to minimize the following cost function

𝐽𝑏
(

𝛽𝑡, 𝑡
)

=
∑

(𝑖,𝑗,𝑘)∈

∑

𝑓∈𝑖,𝑗

∑

𝑞∈

𝑛
∑

𝑧=1
𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 log 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 +

∑

(𝑖,𝑗,𝑘)∈

∑

𝑓∈𝑖,𝑗

∑

𝑞∈

𝑛
∑

𝑧=1
𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 �̂�𝑡

𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧. (21)

s in (11), the cost function (21) represents a trade-off between randomness and rationality.
As for the choice of 𝛼, also 𝛽𝑡 is constrained. In particular, the value of 𝛽𝑡 is feasible if and only if it satisfies the following

onditions:

• The coefficients 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 must be non-negative, i.e.,

𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 ≥ 0 ∀ (𝑖, 𝑗, 𝑘) ∈  , ∀𝑓 ∈ 𝑖,𝑗 , ∀𝑞 ∈  , ∀𝑧 ∈ {1,… , 𝑛} . (22)

• The total flow is conserved. Namely,
∑

𝑓∈𝑖,𝑗

𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 = 1, ∀ (𝑖, 𝑗, 𝑘) ∈  , ∀𝑞 ∈  , ∀𝑧 ∈ {1,… , 𝑛} . (23)

• The post-change queue lengths cannot exceed their respective maximum queue lengths. Thus,

�̃� 𝑡
𝑖,𝑗,𝑓 =

1
𝑛
∑

𝑞∈

∑

𝑘∈𝑖,𝑗

𝑛
∑

𝑧=1
𝑁 𝑡

𝑖,𝑗,𝑘,𝑞𝛽
𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 ≤ 𝑁max

𝑖,𝑗,𝑓 , ∀ (𝑖, 𝑗, 𝑓 ) ∈  . (24)

herefore, the value of 𝛽𝑡 is defined as the solution of the following optimization problem

B (𝑡) ∶

{

min 𝐽𝑏
(

𝛽𝑡, 𝑡
)

Subject to (22), (23), and (24).
(25)

This is a relative entropy optimization problem (Chandrasekaran and Shah, 2016), and it can be solved with a suitable solver.
However, it is possible to notice that, if we relax the constraint (24), B (𝑡) presents a closed-form solution given by Lemma 2
the proof of Lemma 2 is in Appendix B). Furthermore, constraint (24) is active only when the queues are almost full. For these
easons, it is computationally convenient to solve B (𝑡) in two steps. Firstly, we use Lemma 2 to find the solution 𝛽𝑡 by ignoring
he constraint (24). Then, if 𝛽𝑡 is not feasible, instead of solving the relative entropy optimization problem B (𝑡), we simply select
he closest value to 𝛽𝑡 that is feasible. Using this two-steps procedure, we substitute a relative entropy optimization problem with
9

simpler optimization problem that is solved only when the queues are almost full.
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In more detail, we propose to solve B (𝑡) using the following procedure:

1. Find the solution 𝛽𝑡 of a relaxed optimization problem only subject to the constraints (22) and (23). Namely, 𝛽𝑡 is the solution
of the optimization problem

B1 (𝑡) ∶

⎧

⎪

⎨

⎪

⎩

min 𝐽𝑏
(

𝛽𝑡, 𝑡
)

Subject to (22), and (23).
(26)

The optimization problem B1 (𝑡) has a closed form solution as stated in Lemma 2 below. Similarly to the coefficients 𝛼, notice
that 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 = 0 whenever 𝛷𝑗,𝑓 ,𝑞 = ∅ because, in this case, 𝜌𝑖,𝑗,𝑓 ,𝑞 = +∞. This makes sure that vehicles with destination 𝑞
cannot end up in roads from which 𝑞 is not reachable.

2. If the solution 𝛽𝑡 respects the constraint (24), then set 𝛽𝑡 = 𝛽𝑡. Otherwise, select 𝛽𝑡 by finding the closest feasible value to 𝛽𝑡.
Namely, by solving the optimization problem

B2 (𝑡) ∶

⎧

⎪

⎨

⎪

⎩

min
∑

(𝑖,𝑗,𝑘)∈

∑

𝑓∈𝑖,𝑗

∑

𝑞∈

𝑛
∑

𝑧=1

(

𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 − 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧
)2

Subject to (22), (23), and (24).
(27)

in the decision variable 𝛽𝑡. The optimization problem B2 (𝑡) is a constrained quadratic optimization problem that can be
solved efficiently. After solving B2 (𝑡), if 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 = 0 then 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 = 0. In this way, it is guaranteed that the vehicle will
not join queues from which it is impossible to reach their destination.

In summary, we first compute the coefficients 𝛽𝑡 by solving the problem (25) (either directly or through the previous two-step
procedure). This problem and its solution 𝛽𝑡 depend on the expected waiting times as specified previously. Then, we compute the
post-change queue lengths �̃� 𝑡

𝑖,𝑗,𝑓 ,𝑞 according to (20). We close the section with the following lemma providing the solution of the
step-one sub-problem (26).

Lemma 2. Given 𝑡 ∈ N, the optimization problem B1 (𝑡) has a unique solution given by

𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧 =
exp

(

−�̂�𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑞,𝑧

)

∑

𝑝∈𝑖,𝑗

exp
(

−�̂�𝑡
𝑖,𝑗,𝑘,𝑝,𝑞,𝑧

), ∀ (𝑖, 𝑗, 𝑘) ∈  , ∀𝑓 ∈ 𝑖,𝑗 , ∀𝑞 ∈  , ∀𝑧 ∈ {1,… , 𝑛} .

4. Design of traffic-light controllers

In this section, we design two control schemes to control the traffic-lights duty cycles. First, we design a control scheme which
is optimal with respect to a quadratic cost function weighting the queues length, but that does not use any model of the drivers’
behavior (Section 4.4). This corresponds to a classic traffic-light control problem already well-investigated in the literature (see
Section 1.2), and in the context of this article it serves as a mean for comparison (see Section 5). Next, in Section 4.5, we design
a novel controller that embeds a model of the drivers’ behavior. The two controllers share the same measurements, the same cost
function, the same constraints, and the same basic traffic model. In turn, they only differ for a modification of the queues length
taking into account the drivers’ changes due to the waiting times information. Therefore, before introducing the controllers, we first
present the common parts in Sections 4.1–4.3.

4.1. Measurements and cost

At each time instant 𝑡 ∈ N, and for each path (𝑖, 𝑗, 𝑓 ) ∈  and entry node 𝑠 ∈ , both controllers measure:

• The aggregated queue length 𝑁 𝑡
𝑖,𝑗,𝑓 of the path (𝑖, 𝑗, 𝑓 ) at the start of the time interval 𝑇𝑡.

• The aggregated entry flow at the entry node 𝑠 at the end of the time interval 𝑇𝑡, which is given by

𝜁 𝑡𝑠 =
∑

𝑞∈
𝜁 𝑡𝑠,𝑞 .

• The fraction �̆�𝑡𝑖,𝑗,𝑓 of the vehicles traveling along the edge (𝑖, 𝑗) during the time interval 𝑇𝑡 that join the path (𝑖, 𝑗, 𝑓 ) at the end
of the time interval 𝑇𝑡, which is given by

�̆�𝑡𝑖,𝑗,𝑓 =

⎧

⎪

⎪

⎨

⎪

⎪

1 If
∑

𝑘∈𝑖,𝑗

𝛬𝑡
𝑘,𝑖,𝑗 = 0

𝛬𝑡
𝑖,𝑗,𝑓

∑

𝛬𝑡 Otherwise.
10

⎩

𝑘∈𝑖,𝑗 𝑘,𝑖,𝑗
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We underline that all available measurements are aggregated because, unless an ad hoc technology is used, it is not possible to know
the final destination of the vehicles. However, it is possible to measure the local decision of the drivers at each junction. Therefore,
the values of �̆�𝑡𝑖,𝑗,𝑓 , for all (𝑖, 𝑗, 𝑓 ) ∈  and 𝑡 ∈ N, are available. Since both controllers have access to all the measurements in the
network, they are centralized and select the value of all the green light duty cycles 𝑔𝑡 at the start of the time interval 𝑇𝑡 using the
measurements available.

As for what concerns the control objective, the proposed controllers are both based on (finite-horizon) Model Predictive Control
(MPC) (García et al., 1989; Kouvaritakis and Cannon, 2016). At each decision time 𝑡𝑐 ∈ N, the duty cycles 𝑔𝑡𝑐 = (𝑔𝑡𝑐𝑖,𝑗,𝑘)(𝑖,𝑗,𝑘)∈ are
chosen with the aim of minimizing the cost function

𝐽𝑐 (𝑔𝑡𝑐 , 𝑡𝑐 ) =
𝑡𝑐+𝑚
∑

𝑡=𝑡𝑐+1

∑

(𝑖,𝑗,𝑓 )∈

(

𝑁 𝑡
𝑖,𝑗,𝑓

)2
, (28)

in the variable 𝑔𝑡𝑐 and subject to

𝑔𝑡𝑖,𝑗,𝑘 = 𝑔𝑡𝑐𝑖,𝑗,𝑘 ∀ (𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑡 ∈ {𝑡𝑐 + 1,… , 𝑡𝑐 + 𝑚 − 1} (29)

in which 𝑚 ∈ N is the time horizon of the MPC controller, and the dependence of the terms 𝑁 𝑡
𝑖,𝑗,𝑓 from 𝑔𝑡 is made explicit in

Section 4.3 below. The constraint (29) is introduced to limit the dimension of the optimization variables in (28), as otherwise each
term 𝑁 𝑡

𝑖,𝑗,𝑓 in the sum would depend on a different variable 𝑔𝑡. The decision times 𝑡𝑐 , at which the duty cycles are updated, are a
degree of freedom. In the following, we shall assume they are periodic with period 𝛥𝑐 ∈ N, which is referred to as the control period.
The constraint (29) suggests 𝛥𝑐 ≥ 𝑚, although this is not necessary. In any case, taking 𝛥𝑐 sufficiently large avoids changing the
duty cycles too frequently, which is desirable for computational reasons and for the drivers’ comfort.

The duty cycles must satisfy some additional constraints guaranteeing that vehicles driving on intersecting roads do not collide,
and that the problem (28) can be solved by using the available information only. These constraints are discussed below in Sections 4.2
and 4.3 respectively.

4.2. Constraints for collisions avoidance

The traffic lights operating at the same junction are not independent to one another. Indeed, vehicles on potentially colliding
paths cannot cross the intersection at the same time. For example, in the network in Fig. 1(a), the traffic lights at paths (𝖧, 𝖨, 𝖩)
and (𝖫, 𝖨, 𝖩) cannot be green at the same time. Instead, the traffic lights at paths (𝖧, 𝖨, 𝖩) and (𝖩, 𝖨,𝖧) can, since the two paths do not
collide. In this section, we formalize the constraints on the values of 𝑔𝑡 making sure that collisions are avoided.

First, we subdivide the paths into sets in such a way that each set contains only non-conflicting paths. Specifically, given a node
𝑗 ∈  , the set  ⊆ 𝑗 is a non-conflicting set of the node 𝑗 if and only if:

• (consistency) For all
(

𝑖1, 𝑗, 𝑘1
)

,
(

𝑖2, 𝑗, 𝑘2
)

∈ , it is possible for a flow of vehicles to travel along
(

𝑖1, 𝑗, 𝑘1
)

and
(

𝑖2, 𝑗, 𝑘2
)

at the
same time.

• (maximality) For all
(

𝑖1, 𝑗, 𝑘1
)

∈ 𝑗 ⧵  and all
(

𝑖2, 𝑗, 𝑘2
)

∈ , it is not possible for a flow of vehicles to travel along
(

𝑖1, 𝑗, 𝑘1
)

and
(

𝑖2, 𝑗, 𝑘2
)

at the same time.

Then, we define 𝑗 as the set of all the non-conflicting sets of the node 𝑗, and we denote by 𝑑𝑗 its cardinality. Additionally,
 =

⋃

𝑗∈ 𝑗 and 𝑑 is the cardinality of  . For example, with reference to the network in Fig. 1(a), {(𝖪,𝖫, 𝖨) , (𝖪,𝖫,𝖬) , (𝖬,𝖫,𝖪)}
and {(𝖪,𝖫, 𝖨) , (𝖨,𝖫,𝖬) , (𝖨,𝖫,𝖪)} are two valid collisions set of the node 𝖫. We underline that the same path can be an element of
more than one non-conflicting set. Namely, the non-conflicting sets of a node 𝑗 need not being disjoint. For example (𝖪,𝖫, 𝖨) is an
element of both the aforementioned non-conflicting sets. Additionally, there are 𝑑𝖫 = 4 non-conflicting sets of the node 𝖫.

Next, for each junction 𝑗 ∈  , we divide the available green time into 𝑑𝑗 slots, one for each non-conflicting set in 𝑗 . This
requires the introduction of a further set of auxiliary variables. In particular, for each  ∈ 𝑗 and each decision time 𝑡𝑐 ∈ N, we
let 𝑏𝑡𝑐 ∈ [0, 1] be the fraction of time assigned to the non-conflicting set  at time 𝑡𝑐 . These variables must satisfy the following
constraints

∑

∈𝑗

𝑏𝑡𝑐 ≤ 1, ∀𝑗 ∈  , (30a)

∑

∈𝑗∶(𝑖,𝑗,𝑓 )∈
𝑏𝑡𝑐 ≥ 𝑔𝑡𝑐𝑖,𝑗,𝑓 , ∀ (𝑖, 𝑗, 𝑓 ) ∈  , (30b)

𝑏𝑡𝑐 ≥ 0, ∀ ∈ 𝑗 , ∀𝑗 ∈  , (30c)

𝑔𝑡𝑐𝑖,𝑗,𝑓 ≥ 𝑔min, ∀ (𝑖, 𝑗, 𝑓 ) ∈  . (30d)

The constraint (30a) guarantees that the sum of the fractions of time assigned to the non-conflicting sets does not exceed the
maximum available time. The constraint (30b) guarantees that the duty cycle of a traffic light does not exceed the total amount of
time allocated to the non-conflicting sets to which it belongs. The last two constraint bound the variables from below. Here, 𝑔min is
11

the same as in Section 2.2.
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4.3. Dynamics constraints

In this section, we establish a relation between the duty cycles 𝑔𝑡𝑐 and the future queue lengths needed for the definition of the
ost function (28). Since the final destination of the drivers is not measurable and all the available measurements are aggregated,
t is not possible to use the model described in Section 2 for this aim. Instead, the controllers employ a different model relating
he aggregated queue lengths directly to the control variable without resorting to the disaggregated values used in the model of
ection 2. This guarantees that the controllers are implementable by using only the available measurements specified in Section 4.1.

First, we assume the post-change queue lengths �̃� 𝑡
𝑖,𝑗,𝑓 are given, and that they are derived from them the other needed quantities.

The computation of the post-change queue lengths is the main difference between the two controllers considered here, and it is where
the model of the drivers’ behavior enters into play. We postpone the discussion on their computation to Sections 4.4 and 4.5, where
the two controllers are finally presented.

Firstly, given a path (𝑖, 𝑗, 𝑓 ) ∈  and a time 𝑡 ∈ N, the aggregated queue length at the end of the time interval 𝑇𝑡 is obtained
by adding the inbound flow 𝛬𝑡

𝑖,𝑗,𝑓 and removing the outgoing flow 𝑀 𝑡
𝑖,𝑗,𝑓 from the post-change queue lengths �̃� 𝑡

𝑖,𝑗,𝑓 . Therefore, we
ave

𝑁 𝑡+1
𝑖,𝑗,𝑓 = �̃� 𝑡

𝑖,𝑗,𝑓 + 𝛬𝑡
𝑖,𝑗,𝑓 −𝑀 𝑡

𝑖,𝑗,𝑓 , ∀ (𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1}. (31)

Note that, for 𝑡 = 𝑡𝑐 , the value of 𝑁 𝑡𝑐
𝑖,𝑗,𝑓 is obtained from the available measurements. Next, we use the available measurements to

define the aggregated inbound flow as

𝛬𝑡
𝑖,𝑗,𝑓 =

⎧

⎪

⎨

⎪

⎩

𝛼𝑡𝑖,𝑗,𝑓
∑

𝑘∈𝑖,𝑗

𝑀 𝑡
𝑘,𝑖,𝑗 If 𝑖 ∈  ⧵ 

𝜁
𝑡
𝑖 If 𝑖 ∈ 

∀ (𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1}, (32)

where 𝛼𝑡𝑖,𝑗,𝑓 and 𝜁
𝑡
𝑖 are estimates of the values of 𝛼𝑡𝑖,𝑗,𝑓 and 𝜁 𝑡𝑖 , respectively. In particular, for simplicity, we assume that both values

vary slowly in the 𝑚 time intervals considered by the controllers, and for (𝑖, 𝑗, 𝑓 ) ∈  , 𝑠 ∈ , and 𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚}, we set

𝛼𝑡𝑖,𝑗,𝑓 =
1
𝑚

𝑡𝑐
∑

𝜏=𝑡𝑐−𝑚+1
�̆�𝜏𝑖,𝑗,𝑓 , 𝜁

𝑡
𝑠 =

1
𝑚

𝑡𝑐
∑

𝜏=𝑡𝑐−𝑚+1
𝜁 𝜏𝑠 .

However, it is possible to employ more advanced predictors that consider more complex dynamics in the traffic behavior and the
known typical periodicity of the traffic.

Similarly to Section 2.2, the values of the aggregated outgoing flows 𝑀 𝑡 = (𝑀 𝑡
𝑖,𝑗,𝑓 )(𝑖,𝑗,𝑓 )∈ are defined as the solution of

an optimization problem that searches the maximum feasible value. In particular, a value is feasible if it satisfies the following
constraints:

• All the aggregated outgoing flows have to be non-negative. Hence,

𝑀 𝑡
𝑖,𝑗,𝑓 ≥ 0, ∀(𝑖, 𝑗, 𝑓 ) ∈  . (33)

• Only the vehicles that are queuing at the start of the time interval 𝑇𝑡 can cross the path. Thus,

𝑀 𝑡
𝑖,𝑗,𝑓 ≤ �̃� 𝑡

𝑖,𝑗,𝑓 , ∀(𝑖, 𝑗, 𝑓 ) ∈  . (34)

• The outgoing flow cannot exceed the effective capacity of the path. Therefore,

𝑀 𝑡
𝑖,𝑗,𝑓 ≤ 𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑐𝑖,𝑗,𝑓 , ∀(𝑖, 𝑗, 𝑓 ) ∈  . (35)

• The queue length at the start of the next time interval 𝑇𝑡+1 cannot exceed the maximum queue length. Hence,

𝑁 𝑡+1
𝑖,𝑗,𝑓 ≤ 𝑁max

𝑖,𝑗,𝑓 , ∀(𝑖, 𝑗, 𝑓 ) ∈  ⧵ , (36)

where the relation between 𝑁 𝑡+1
𝑖,𝑗,𝑘 and 𝑀 𝑡 is defined in (31) and (32). Notice that this constraint is not defined for the entry

paths because, in these cases, 𝑁max
𝑖,𝑗,𝑓 = ∞.

Therefore, we define the value of the aggregated outgoing flows as the solution of the optimization problem

̆M (𝑡) ∶

⎧

⎪

⎨

⎪

max
∑

(𝑖,𝑗,𝑓 )∈
𝑀 𝑡

𝑖,𝑗,𝑓

Subject to (33), (34), (35), and (36).
(37)
12
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This is a linear optimization problem that is always feasible because the solution 𝑀 𝑡
𝑖,𝑗,𝑓 = 0, ∀(𝑖, 𝑗, 𝑓 ) ∈  , always satisfies the

constraints. Hence, the solution is a function of 𝑔𝑡𝑐 , �̃� 𝑡 = (�̃� 𝑡
𝑖,𝑗,𝑓 )(𝑖,𝑗,𝑓 )∈ and 𝑡. Denoting this function with 𝛶 , we have3

𝑀 𝑡 = 𝛶
(

𝑔𝑡𝑐 , �̃� 𝑡, 𝑡
)

∀𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1}, (38)

4.4. Control without a model for the drivers’ behavior

In this section, we present the first control scheme, which optimizes the cost function (28) without using any model of the drivers’
behavior. In this case, therefore, we simply have

�̃� 𝑡
𝑖,𝑗,𝑓 = 𝑁 𝑡

𝑖,𝑗,𝑘, ∀ (𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1}, (39)

which completes the equations presented in previous Section 4.3 for the first controller. Then, the controller is obtained as a solution
to the following optimization problem, with cost function (28) and collecting all the constraints introduced in Sections 4.1, 4.2, 4.3,
and 4.4.

N ′ (𝑡𝑐
)

∶

{

min 𝐽𝑐
(

𝑔𝑡𝑐 , 𝑡𝑐
)

Subject to (29), (30), (31), (32), (38), and (39).
(40)

in the variables 𝑔𝑡𝑐 and 𝑏𝑡𝑐 = (𝑏𝑡𝑐 )∈𝑗 ,𝑗∈ . Here, we can observe that the constraint (38) is the only nonlinear constraint. For
computational convenience, we consider the following linear constraints

𝑀 𝑡
𝑖,𝑗,𝑓 ≥ 0, ∀(𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1}, (41a)

𝑀 𝑡
𝑖,𝑗,𝑓 ≤ �̃� 𝑡

𝑖,𝑗,𝑓 , ∀(𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1}, (41b)

𝑀 𝑡
𝑖,𝑗,𝑓 ≤ 𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑐𝑖,𝑗,𝑓 , ∀(𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1}, (41c)

𝑁 𝑡
𝑖,𝑗,𝑓 ≤ 𝑁max

𝑖,𝑗,𝑓 , ∀(𝑖, 𝑗, 𝑓 ) ∈  ⧵ , ∀𝑡 ∈ {𝑡𝑐 + 1,… , 𝑡𝑐 + 𝑚}. (41d)

Then, we define the following relaxed optimization problem

N
(

𝑡𝑐
)

∶

⎧

⎪

⎨

⎪

⎩

min 𝐽𝑐
(

𝑔𝑡𝑐 , 𝑡𝑐
)

− 𝜀
𝑡𝑐+𝑚−1
∑

𝑡=𝑡𝑐

∑

(𝑖,𝑗,𝑓 )∈
𝑀 𝑡

𝑖,𝑗,𝑓 ,

Subject to (29), (30), (31), (32), (39), and (41).
(42)

in the decision variables 𝑔𝑡𝑐 , 𝑏𝑡𝑐 and (𝑀 𝑡)𝑡∈{𝑡𝑐 ,…,𝑡𝑐+𝑚−1}. In N
(

𝑡𝑐
)

, the nonlinear constraint (38) is replaced with the linear
constraints (41) and the cost function is obtained by summing to the cost function (28) a quadratic term that minimize the difference
between the outgoing flows and their respective upper bounds weighted with the parameter 𝜀 ∈ [0,∞). Therefore, N

(

𝑡𝑐
)

aims to
maximize the outgoing flows subject to their feasibility constraints and to minimize the cost function (28).

Since the constraints on 𝑔𝑡𝑐 and 𝑏𝑡𝑐 of N ′ (𝑡𝑐
)

and N
(

𝑡𝑐
)

are the same, a feasible point (𝑔𝑡𝑐 , 𝑏𝑡𝑐 ) for N
(

𝑡𝑐
)

is also feasible for
N ′ (𝑡𝑐

)

and vice versa. However, an optimal solution of N
(

𝑡𝑐
)

is not necessary an optimal solution of N ′ (𝑡𝑐
)

. But N
(

𝑡𝑐
)

is a
convex quadratic optimization problem with linear constraints that can be solved efficiently using standard solvers.

4.5. Control that considers a model for the drivers’ behavior

In this section, we describe the second control scheme that optimizes the cost function (28) by considering a model of the drivers’
reaction to the length of the queues. Since it is impossible to discern the destination of the drivers in the queues, we cannot use the
same model described in Section 3.2. In particular, it is not possible to assess the crossing time defined in (10) and, therefore, the
traveling time. For this reason, in this context, we derive a model where the drivers only react to the waiting time in the queues.

Consider a vehicle that is in position 𝑥 ∈ [0, 𝑁 𝑡
𝑖,𝑗,𝑘] in the queue (𝑖, 𝑗, 𝑘) ∈  at the start of the time interval 𝑇𝑡. As explained in

Section 3.2, the vehicle have to select one queue among the possible alternatives {(𝑖, 𝑗, 𝑓 )}𝑓∈𝑖,𝑗
. Following the same reasoning of

Section 3.2, we assign a weight to each possible decision that only depends on the waiting time of the queues. In particular, for
each possible alternative queue (𝑖, 𝑗, 𝑓 ), we define the weight

�̆�𝑡
𝑖,𝑗,𝑘,𝑓 (𝑥) ∶=

⎧

⎪

⎨

⎪

⎩

𝜉�̂�𝑡
𝑖,𝑗,𝑓 (𝑥) − �̆� If 𝑘 = 𝑓

𝜉�̂�𝑡
𝑖,𝑗,𝑓 (𝑥 + �̆�) If 𝑘 ≠ 𝑓 ∧ 𝑥 + �̆� < 𝑁 𝑡

𝑖,𝑗,𝑓

𝜉�̂�𝑡
𝑖,𝑗,𝑓

(

𝑁 𝑡
𝑖,𝑗,𝑓

)

If 𝑘 ≠ 𝑓 ∧ 𝑥 + �̆� ≥ 𝑁 𝑡
𝑖,𝑗,𝑓 ,

(43)

where �̂�𝑖,𝑗,𝑓 is the perceived waiting time of the queue (𝑖, 𝑗, 𝑓 ), as defined in (17), and 𝜉, �̆�, �̆� ∈ [0,+∞) are three tuning knobs of
the controller that have the same meaning as the three parameters 𝜉, 𝜎 and 𝜂, respectively.

3 For simplicity, we assume that the solution of M̆ 𝑡 is always unique. Otherwise, the function 𝛶 returns one of the possible solutions arbitrarily.
13
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N
q

t

A
c

Then, given 𝑓 ∈ 𝑖,𝑗 , we define �̆�𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑧 as the mean weight among the vehicles that are in the queue section 𝑆𝑡

𝑖,𝑗,𝑘,𝑧, as defined
in (19). In particular, we have

�̆�𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑧 ∶=

1

𝑁 𝑡
𝑖,𝑗,𝑘

𝑛

∫𝑆𝑡
𝑖,𝑗,𝑘,𝑧

�̆�𝑡
𝑖,𝑗,𝑘,𝑓 (𝑥) 𝑑𝑥

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜉ℎ

𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓

𝑁 𝑡
𝑖,𝑗,𝑘 (2𝑧 − 1)

2𝑛
− �̆� If 𝑓 = 𝑘

𝜉ℎ

𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓

(

𝑁 𝑡
𝑖,𝑗,𝑘 (2𝑧 − 1)

2𝑛
+ �̆�

)

If 𝑓 ≠ 𝑘 ∧ 𝑧
𝑁 𝑡

𝑖,𝑗,𝑘

𝑛
+ �̆� < 𝑁 𝑡

𝑖,𝑗,𝑓

𝜉ℎ

𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓
𝑁 𝑡

𝑖,𝑗,𝑓 If 𝑓 ≠ 𝑘 ∧ (𝑧 − 1)
𝑁 𝑡

𝑖,𝑗,𝑘

𝑛
+ �̆� ≥ 𝑁 𝑡

𝑖,𝑗,𝑓

𝜉ℎ

𝑣𝑖,𝑗,𝑓 𝑔𝑡𝑖,𝑗,𝑓

⎛

⎜

⎜

⎜

⎝

𝑧
(

𝑁 𝑡
𝑖,𝑗,𝑓 − �̆�

)

+ �̆� −
(𝑧 − 1)2 𝑁 𝑡

𝑖,𝑗,𝑘

2𝑛
−

𝑛
(

𝑁 𝑡
𝑖,𝑗,𝑓 − �̆�

)2

2𝑁 𝑡
𝑖,𝑗,𝑘

⎞

⎟

⎟

⎟

⎠

Otherwise.

ow, if we denote by 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧 ∈ [0, 1] the fraction of vehicles in section 𝑆𝑡
𝑖,𝑗,𝑘,𝑧, (𝑖, 𝑗, 𝑘) ∈  and 𝑧 ∈ {1,… , 𝑛}, that decide to join the

ueue (𝑖, 𝑗, 𝑓 ) at time 𝑡, for some 𝑓 ∈ 𝑖,𝑗 , the post-change queue lengths are given as follows

�̃� 𝑡
𝑖,𝑗,𝑓 =

1
𝑛

∑

𝑘∈𝑖,𝑗

𝑛
∑

𝑧=1
𝑁 𝑡

𝑖,𝑗,𝑘𝛽
𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑧, ∀ (𝑖, 𝑗, 𝑓 ) ∈  , ∀𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1}. (44)

Now, following the reason of Section 3.2, we define the values of the coefficients 𝛽𝑡 =
(

𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧
)

(𝑖,𝑗,𝑘)∈ ,𝑓∈𝑖,𝑗 ,𝑧∈{1,…,𝑛} as the one
hat minimize the cost function

𝐽𝑏
(

𝛽𝑡, 𝑡
)

=
∑

(𝑖,𝑗,𝑘)∈

∑

𝑓∈𝑖,𝑗

𝑛
∑

𝑧=1
𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧 log 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧 +

∑

(𝑖,𝑗,𝑘)∈

∑

𝑓∈𝑖,𝑗

𝑛
∑

𝑧=1
𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧 �̆�𝑡

𝑖,𝑗,𝑘,𝑓 ,𝑧. (45)

s in (11) and in (21), the cost function (45) represents a trade-off between randomness and rationality. The values of 𝛽𝑡 are
onstrained with the same reasoning used for constraining 𝛽𝑡. In particular, 𝛽𝑡 has to satisfy the following conditions:

• The coefficients 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧 must be non-negative, i.e.,

𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧 ≥ 0 ∀ (𝑖, 𝑗, 𝑘) ∈  , ∀𝑓 ∈ 𝑖,𝑗 , ∀𝑧 ∈ {1,… , 𝑛} . (46)

• The total flow is conserved. Namely,
∑

𝑓∈𝑖,𝑗

𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧 = 1, ∀ (𝑖, 𝑗, 𝑘) ∈  , ∀𝑧 ∈ {1,… , 𝑛} . (47)

• The post-change queue lengths cannot exceed their respective maximum queue lengths. Thus,

�̃� 𝑡
𝑖,𝑗,𝑓 =

1
𝑛

∑

𝑘∈𝑖,𝑗

𝑛
∑

𝑧=1
𝑁 𝑡

𝑖,𝑗,𝑘,𝑞𝛽
𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑧 ≤ 𝑁max

𝑖,𝑗,𝑓 , ∀ (𝑖, 𝑗, 𝑓 ) ∈  . (48)

Therefore, the value of 𝛽𝑡 is defined as the solution of the following optimization problem

B̆ (𝑡) ∶

{

min 𝐽𝑏
(

𝛽𝑡, 𝑡
)

Subject to (46), (47), and (48).
(49)

This is a convex optimization problem with linear constraints, and therefore it has a unique solution. Hence, the value of the unique
solution 𝛽𝑡 is a function of 𝑔𝑡𝑐 , 𝑁 𝑡 = (𝑁 𝑡

𝑖,𝑗,𝑘)(𝑖,𝑗,𝑘)∈ and 𝑡. Denoting this function with 𝛹 , we have

𝛽𝑡 = 𝛹
(

𝑔𝑡𝑐 , 𝑁 𝑡, 𝑡
)

∀𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1}, (50)

which completes the equations presented in Section 4.3 for the second controller. Then, the second controller is obtained by
minimizing the cost function (28) constrained to all the constraints described in Sections 4.1, 4.2, 4.3, and 4.5.

W ′ (𝑡𝑐
)

∶

{

min 𝐽𝑐
(

𝑔𝑡𝑐 , 𝑡𝑐
)

Subject to (29), (30), (31), (32), (38), (44), and (50).
(51)

in the decision variables 𝑔𝑡𝑐 and 𝑏𝑡𝑐 .
The constraint (50) is nonlinear and the function 𝛹 is only defined as the solution of the optimization problem B̆ (𝑡). Therefore,

it is not trivial to find the solution of the optimization problem W ′ (𝑡𝑐
)

. In order to find this solution, it is useful to define two
14
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T
o

I

• A simplified version of W ′ (𝑡𝑐
)

where the value of 𝛽 = (𝛽𝑡)𝑡∈{𝑡𝑐 ,…,𝑡𝑐+𝑚−1} is given instead of being constrained to the other
variables. Hence, we define

W
′(
𝛽, 𝑡𝑐

)

∶

{

min 𝐽𝑐
(

𝑔𝑡𝑐 , 𝑡𝑐
)

Subject to (29), (30), (31), (32), (38), and (44).
(52)

in the decision variables 𝑔𝑡𝑐 , 𝑏𝑡𝑐 and (𝑀 𝑡)𝑡∈{𝑡𝑐 ,…,𝑡𝑐+𝑚−1}. We define 𝛷 as the function that, given a value of 𝛽 and 𝑡𝑐 , returns the
optimal 𝑔𝑡𝑐 according to the optimization problem W

′(
𝛽, 𝑡𝑐

)

.
• An optimization problem whose solution is the value of 𝛽 given a certain value of 𝑔𝑡𝑐 . Therefore, we have

B
(

𝑔𝑡𝑐 , 𝑡𝑐
)

∶

⎧

⎪

⎨

⎪

⎩

min
𝑡𝑐+𝑚−1
∑

𝑡=𝑡𝑐

𝐽𝑏
(

𝛽𝑡𝑐 , 𝑡𝑐
)

Subject to (31), (32), (38), (44), (46), (47), and (48).
(53)

in the decision variables 𝛽. This optimization problem merges the 𝑚 optimization problems B̆ (𝑡), with 𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1},
where the value of the queue lengths are constrained by the dynamic model described in (31), (32), (38) and (44). We define
𝛤 as the function that, given a value of 𝑔𝑡𝑐 and 𝑡𝑐 , returns the optimal 𝛽 according to the optimization problem B

(

𝑔𝑡𝑐 , 𝑡𝑐
)

.

Now, it is possible to note that the optimization problem W ′(𝑡𝑐
)

is a bi-level optimization problem that interconnects W
′(
𝛽, 𝑡𝑐

)

and B
(

𝑔𝑡𝑐 , 𝑡𝑐
)

. Therefore, an optimal solution 𝑔𝑡𝑐⋆ of W ′(𝑡𝑐
)

satisfies

𝑔𝑡𝑐⋆ = 𝛷
(

𝛤
(

𝑔𝑡𝑐⋆ , 𝑡𝑐
)

, 𝑡𝑐
)

.

herefore, 𝑔𝑡𝑐⋆ is a fixed-point of the function 𝛷
(

𝛤
(

⋅, 𝑡𝑐
)

, 𝑡𝑐
)

. Hence, it is possible to use a fixed-point algorithm to find the solution
f W ′(𝑡𝑐

)

. In particular, starting from an arbitrary initial condition 𝛽:

FP1. We solve W
′(
𝛽, 𝑡𝑐

)

, and we assign 𝑔𝑡𝑐⋆ ← 𝛷
(

𝛽, 𝑡𝑐
)

;
FP2. We solve B

(

𝑔𝑡𝑐⋆ , 𝑡𝑐
)

, and we assign 𝛽 ← 𝛤
(

𝑔𝑡𝑐⋆ , 𝑡𝑐
)

;
FP3. If a stopping criterion is not satisfied, return to FP1, otherwise, the optimal solution is 𝑔𝑡𝑐⋆ .

The step FP2 can be achieved by sequentially solving the optimization problems B̆ (𝑡), with 𝑡 ∈ {𝑡𝑐 ,… , 𝑡𝑐 + 𝑚 − 1}, by using the
dynamic model imposed by the constraints (31), (32), (38) and (44). Furthermore, the optimization problem B̆ (𝑡) can be solved
using a similar two steps procedure to the one proposed in Section 3.2 for the solution of B (𝑡) as explained in detail in Section 4.6.
nstead, the step FP1 requires solving the nonlinear optimization problem W

′(
𝛽, 𝑡𝑐

)

. Since the constraint (38) is the only nonlinear
constraint, it is possible to solve W

′(
𝛽, 𝑡𝑐

)

by employing the same reasoning used for the solution of N ′ (𝑡𝑐
)

. Therefore, we define
the relaxed optimization problem

W
(

𝛽, 𝑡𝑐
)

∶

⎧

⎪

⎨

⎪

⎩

min 𝐽𝑐
(

𝑔𝑡𝑐 , 𝑡𝑐
)

− 𝜀
𝑡𝑐+𝑚−1
∑

𝑡=𝑡𝑐

∑

(𝑖,𝑗,𝑓 )∈
𝑀 𝑡

𝑖,𝑗,𝑓 ,

Subject to (29), (30), (31), (32), (41), and (44).
(54)

in the decision variables 𝑔𝑡𝑐 , 𝑏𝑡𝑐 and (𝑀 𝑡)𝑡∈{𝑡𝑐 ,…,𝑡𝑐+𝑚−1}. This is a convex quadratic optimization problem with linear constraints that
can be solved using a suitable solver.

4.6. Computational analysis of the controller

The controller described in Section 4.5 is computed using a fixed-point algorithm. Therefore, its computational complexity
depends on two factors: (i) the convergence rate of the fixed-point procedure, and (ii) the complexity of computing the function
𝛷
(

𝛤
(

⋅, 𝑡𝑐
)

, 𝑡𝑐
)

. Regarding the first factor, fixed-point algorithms are well-studied in the literature (Agarwal et al., 2001), and their
convergence properties can be characterized under different conditions. For instance, the Banach fixed-point theorem (Agarwal
et al., 2001, Theorem 1.1) leads to a simple iterative algorithm that converges if the function 𝛷

(

𝛤
(

⋅, 𝑡𝑐
)

, 𝑡𝑐
)

is a contraction,
which is the case, for example, when the functions 𝛷(⋅, 𝑡𝑐 ) and 𝛤 (⋅, 𝑡𝑐 ) are Lipschitz and the product of their Lipschitz constants is
less than 1. Nevertheless, a formal proof of existence of fixed-point algorithms for the specific case considered here (namely, for
the map 𝛷

(

𝛤
(

⋅, 𝑡𝑐
)

, 𝑡𝑐
)

) with proved guarantees and convergence rate is still missing, and we leave it for future investigation. In
practical implementations, one can set a maximum value for the number of iterations. This leads to suboptimal solutions but avoids
unbounded computation times.

The second factor, i.e., the complexity of computing the function 𝛷
(

𝛤
(

⋅, 𝑡𝑐
)

, 𝑡𝑐
)

, requires the computation of the function 𝛷
(

⋅, 𝑡𝑐
)

(Step FP1 above) and the function 𝛤
(

⋅, 𝑡𝑐
)

(Step FP2 above). In the remainder of the section, we discuss the complexity of these
two steps. First, we focus on Step FP1, which requires the solution of the optimization problem W

(

𝛽, 𝑡𝑐
)

in Eq. (54). As explained
before, this is a convex quadratic optimization problem with linear equality constraints and linear inequality constraints. This type
of quadratic optimization problems are well known and studied in the literature (Boyd and Vandenberghe, 2019; Bomze, 1998;
Xu, 2003) and efficient algorithms are available (Coleman and Li, 1996; Andersen et al., 2003; Fletcher, 1971; Ye and Tse, 1989).
15



Transportation Research Part C 145 (2022) 103910M. Scandella et al.

i
t
𝑑
a

B

i

A
n
b
p
e
e
T

L

a
c
c

e
E
c
t
t
e

Additionally, in this case, there are (𝑚 + 1)𝑛𝑝 + 𝑑 optimization variables, 4 𝑚𝑛𝑝 equality constraints and 𝑛𝑣 + 𝑑 + 2𝑛𝑝 + (4𝑛𝑝 − 𝑛𝑏)𝑚
nequality constraints. Therefore, the dimension of the problem scales linearly with the number of paths in the network 𝑛𝑝 and
he MPC time horizon 𝑚. Similarly, the number of constraints also scales linearly with the number 𝑛𝑣 of junctions and the number

of non-conflicting sets. Therefore, the step FP1 can be solved efficiently with well known procedures. In particular, there exist
lgorithm that finds the solution in polynomial time complexity with respect to the decision variable (Ye and Tse, 1989).

Step FP2 requires the solution of the optimization problem B
(

𝑔𝑡𝑐 , 𝑡𝑐
)

defined in Eq. (53). This optimization problem can be
solved iteratively by relying on the value of 𝛽𝑡 (and 𝑁 𝑡) to compute the value of 𝛽𝑡+1 (and 𝑁 𝑡+1). In particular, starting with 𝑡 = 𝑡𝑐 ,
we can use the following procedure:

FP2.A. Compute 𝛽𝑡 by solving the optimization problem B̆ (𝑡) describe in (49);
FP2.B. Compute �̃� 𝑡

𝑖,𝑗,𝑓 , for all (𝑖, 𝑗, 𝑓 ) ∈  , according to (44);
FP2.C. Compute 𝑀 𝑡 by solving the optimization problem ̆M (𝑡) described in (37);
FP2.D. Compute 𝛬𝑡

𝑖,𝑗,𝑓 , for all (𝑖, 𝑗, 𝑓 ) ∈  , according to (32);
FP2.E. Compute 𝑁 𝑡+1

𝑖,𝑗,𝑓 , for all (𝑖, 𝑗, 𝑓 ) ∈  , according to (31);
FP2.F. If 𝑡 < 𝑡𝑐 + 𝑚 return to FP2.A. with 𝑡 ← 𝑡 + 1.

The only two critical steps are FP2.A. and FP2.C. that require the solution of an optimization problem. The optimization problem
̆ (𝑡) is a relative entropy optimization problem (Chandrasekaran and Shah, 2016) similar to the optimization problem B (𝑡). Hence,
t can be substituted by the same two-steps procedure used for the solution of B (𝑡) detailed below:

1. Find the solution ̂̆𝛽𝑡 of a relaxed optimization problem only subject to the constraints (46) and (47). In particular, ̂̆𝛽𝑡 is the
solution of

B̆1 (𝑡) ∶

{

min 𝐽𝑏
(

𝛽𝑡, 𝑡
)

Subject to (46), and (47).
(55)

Similarly to B1 (𝑡), B̆1 (𝑡) has a closed form solution as stated by Lemma 3 below.
2. If the solution ̂̆𝛽𝑡 respects the constraint (48), then set 𝛽𝑡 = ̂̆𝛽𝑡. Otherwise, select 𝛽𝑡 as the closest feasible value to 𝛽𝑡, which

can be obtained by solving the following optimization problem

B̆2 (𝑡) ∶

⎧

⎪

⎨

⎪

⎩

min
∑

(𝑖,𝑗,𝑘)∈

∑

𝑓∈𝑖,𝑗

𝑛
∑

𝑧=1

( ̂̆𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧 − 𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧
)2

Subject to (46), (47), and (48).
(56)

in the decision variable 𝛽𝑡.

s explained in Section 3.2 in the solution of B(𝑡) (see the discussion below (25)), the constraint (48) is active when the queues are
early full. If this is not the case, then only the first step of the above procedure suffices to compute 𝛽𝑡 and, hence, step FP2.A. can
e solved in closed form according to Lemma 3. Otherwise, one needs to solve (56). Nevertheless, this is a quadratic optimization
roblem with linear inequality and equality constraints and whose dimension scales linearly with the number of paths 𝑛𝑝. As
xplained before, this type of quadratic optimization problems are well known and studied in the literature and efficient solutions
xist (Boyd and Vandenberghe, 2019; Bomze, 1998; Xu, 2003; Coleman and Li, 1996; Andersen et al., 2003; Fletcher, 1971; Ye and
se, 1989).

We conclude the discussion of step FP2.A. with the following Lemma which characterizes the closed form solution for B̆1 (𝑡).

emma 3. Given 𝑡 ∈ N, the optimization problem B̆1 (𝑡) has a unique solution given by

̂̆𝛽𝑡𝑖,𝑗,𝑘,𝑓 ,𝑧 =
exp

(

−�̆�𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑧

)

∑

𝑝∈𝑖,𝑗

exp
(

−�̆�𝑡
𝑖,𝑗,𝑘,𝑓 ,𝑧

), ∀ (𝑖, 𝑗, 𝑘) ∈  , ∀𝑓 ∈ 𝑖,𝑗 , ∀𝑧 ∈ {1,… , 𝑛} .

The second critical step for the computation of FP2 is FP2.C., which requires the solution of the optimization problem ̆M (𝑡). This
is linear programming problem with 𝑛𝑝 optimization variables and 4𝑛𝑝−𝑛𝑏 inequality constraints. This is a well known problem (Boyd
nd Vandenberghe, 2019; Bertsimas and Tsitsiklis, 1997), and it can be easily solved using the Simplex method with a polynomial
omputational complexity (Bertsimas and Tsitsiklis, 1997, Table 3.1). Furthermore, in this particular case, Simplex methods have
omplexity 𝑂(𝑛2𝑝).

We conclude this section by remarking that the proposed controller is meant to be used with moderately large periods,
.g., between 30 min and an hour, and it is only meant to be a proof of concept that show the beneficial effects of showing the
RTD to the drivers and by exploiting their rational behavior. Therefore, the computational efficiency of the controller is not a
entral focus of this work, and improved solutions are left to future developments. In particular, the computational complexity of
he proposed method scales with the number of paths 𝑛𝑝 in the network. Therefore, it can be greatly improved by decentralizing
he procedure in such a way that each junction can act independently of each other like it is commonly done in the literature (Zhao
16

t al., 2011; Le et al., 2015; Eom and Kim, 2020).
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5. Numerical results

In this section, we present some numerical simulations illustrating, as a proof of concept, the possible impact of showing to the
rivers the expected waiting time and the advantages of using the control policy proposed in Section 4.5 that takes the drivers’
eaction into account. In particular, we compare the optimal controller presented in Section 4.4 with (i) the same controller where,

however, the expected waiting times are shown to the drivers, and (ii) the controller proposed in Section 4.5, which displays the
xpected waiting times and embeds a model of the drivers’ behavior. The first comparison allows us to underline the impact of
howing the expected waiting times also when using classical control policies. The second, instead, shows the advantages of a
ontroller that embeds a model of the drivers’ reaction. In all the simulations, the linear and quadratic programming problems are
olved using YALMIP (Löfberg, 2004) equipped with MOSEK (Mosek APS, 2022). Moreover, we use the term NC (No Change) to
efer to the control policy presented in Section 4.4, and WC (With Changes) to refer to the controller presented in Section 4.5. The
ixed-point algorithm of controller WC stops if the difference between the values of 𝛽 of the last two steps is smaller than a threshold
r, if the procedure do not converge, after 10 iteration.

In the first set of simulations, we consider the network of Fig. 1(a) with maximum queue length 𝑁max
𝑖,𝑗,𝑓 = 80 and maximum

apacity 𝑣𝑖,𝑗,𝑓 = 20 for all (𝑖, 𝑗, 𝑓 ) ∈  (Section 2.2), and subject to a traffic input equal to

𝜁 𝑡𝖺,𝖩 = 𝜁 𝑡𝗀,𝖩 = 5 + 15 exp
(

−
(𝑡 − 90)2

1502

)

+ 20 exp
(

−
(𝑡 − 250)2

602

)

+ sin
( 2𝜋𝑡

5

)

,

𝜁 𝑡𝑖,𝑞 = 0, ∀(𝑖, 𝑞) ∈ 2 ⧵ {(𝖺, 𝖩), (𝗀, 𝖩)}.
(57)

The graph of 𝜁 𝑡𝖺,𝖩 and 𝜁 𝑡𝗀,𝖩 is shown in Fig. 2 (profile 0). This input profile models a slowly increasing traffic flow with a final peak
then fading away. Regarding the non-conflicting sets, for each node 𝑗 ∈  , we call two paths (𝑖, 𝑗, 𝑘), (𝑖′, 𝑗, 𝑘′) ∈ 𝑗 not compatible
if either 𝑘 = 𝑘′, or the corresponding arrows in Fig. 1(a) intersect. Moreover, we let 𝛾𝖠,𝖣,𝖧 = 𝛾𝖤,𝖣,𝖠 = 𝛾𝖤,𝖣,𝖧 = 1∕2, 𝛾𝑖,𝑗,𝑘 = 1∕3 for all
𝑖, 𝑗, 𝑘) ∈ 𝑗 with 𝑗 ∈ {𝖧, 𝖨, 𝖩,𝖫}, and we set all the remaining values to 1. The traffic evolution is modeled according to Sections 2
nd 3, in which we set ℎ = 1, 𝜇 = 5 in (10), 𝜉 = 4, 𝜎 = 1∕2, and 𝜂 = 2 in (18), and 𝑛 = 30 in (19). The choice ℎ = 1 normalizes
he time units to the value of the integration step ℎ, which corresponds to about 5 min. In all the simulations, the controllers start
orking at time 𝑡 = 40.

Fig. 3 shows a comparison between the NC controller of Section 4.4 with and without showing the expected waiting times,
nd the controller WC of Section 4.5, which shows the waiting time information and also considers the drivers’ reaction to it.
or completeness, we also simulate the NC controller without waiting-time information with a lager value of 𝑔min. Indeed, if the
nformation on the waiting times is not shown, it is licit to expect larger values for 𝑔min. As expected, the simulations show a
onsiderable gain in showing the expected waiting times also with the same controller NC. Moreover, the simulations also show an
dditional advantage in using the control policy WC that takes the drivers’ reaction into account. In particular, the table in Fig. 4
eports the value of the duty cycle, averaged on the interval corresponding to the peak of the incoming traffic, of some crucial
raffic lights. As shown by the figure, and with reference to the network of Fig. 1(a), the controller WC blocks as much as possible
he traffic flow in the path (𝖦,𝖧, 𝖨), and diverts the traffic coming from 𝗀 toward node 𝖪. This permits to better handle the traffic
oming from node 𝖺. In addition, it also sets 𝑔𝖠,𝖣,𝖤 = 1, thus maximizing the flow taking the alternative road (𝖺,𝖠,𝖣,𝖤,𝖡,𝖢, 𝖥, 𝖩) to

node 𝖩. Finally, Fig. 3 also shows that larger values of 𝑔min degrade the performances. This further supports the idea of showing the
waiting-time information, as it allows one to use lower values of 𝑔min.

Figs. 5, 6, 7, and 8 show the comparison of the same controllers simulated in Fig. 3 in which, however, the inputs 𝜁 𝑡𝖺,𝖩 and 𝜁 𝑡𝗇,𝖩
equal, respectively, to the profiles 1, 2, 3, and 4 in Fig. 2. Profile 1 models a rush-hour scenario with a large initial peak and a slow
decay. Profile 2 models a train of step-wise pulses. Profile 3 models a commuting scenario by means of a large and narrow peak of
incoming flow. Finally, profile 4 models a sudden change in the incoming flow followed by a steady decay. In all the simulations,
the WC controller performs better than the NC controller with expected waiting-time information, which, in turn, performs better
than the same controller without such information.

Fig. 9 shows the performance of the WC controller for different values of the traffic parameters 𝜉 and 𝜎 in (18) and with matching
coefficients (𝜉, �̆�) = (𝜉, 𝜎). All the other parameters are the same as specified previously. The simulations show that, when the WC
controller matches the traffic parameters, the performance of the control policy is not very sensitive to their actual value. Fig. 10
shows the performance of the WC controller for different values of (𝜉, �̆�) not matching the model’s parameters (𝜉, 𝜎), kept fixed to
(𝜉, 𝜎) = (4, 1∕2) as before. The range of values simulated goes from −87% to +200% of the nominal value for 𝜉, and from −90% to
+200% of the nominal value of �̆�. In all cases, the performance are better than the NC without waiting-times information. Fig. 10
suggests that overestimating 𝜉 is better than underestimating it.

Fig. 11 shows the same controller WC of Fig. 3 for different values of 𝑁max
𝑖,𝑗,𝑓 . As 𝑁max

𝑖,𝑗,𝑓 is taken the same for every path (𝑖, 𝑗, 𝑓 ) ∈  ,
we drop the dependency on it. As the figure shows, the sensitivity of the controller with respect to 𝑁max is low, and better
performances are obtained for smaller values of 𝑁max.

Fig. 12 shows a comparison between the controllers NC (showing the waiting-time information) and WC for different values
of the control horizon 𝑚. As shown in the figure, the controller WC is not much sensitive to the choice of 𝑚, whereas NC shows
a higher variance in the performance. In particular, the performance of NC with 𝑚 = 5 or 𝑚 = 10 are close to that of the same
controller without showing the waiting-times information.

Finally, Fig. 13 show a comparison between the same controllers of Fig. 3 for the network shown in Fig. 1(b), in which an
additional input flow from node 𝗇 is added. Also in this case, WC outperforms NC. Fig. 14 shows the mean value on the interval
[150, 350] of some relevant traffic-light duty cycles. As shown by the figure, the WC controller and the NC controller showing the
17
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Fig. 2. Traffic input profiles.

Fig. 3. Comparison between (i) controller NC with 𝑔min = 10−2 and 𝑔𝑡𝑖,𝑗,𝑓 = 𝛾𝑖,𝑗,𝑓 for all (𝑖, 𝑗, 𝑓 ) ∈  (yellow); (ii) NC with 𝑔min = 10−2 and 𝑔𝑡𝑖,𝑗,𝑓 = 𝑔𝑡𝑖,𝑗,𝑓 for all
𝑖, 𝑗, 𝑓 ) ∈  (blue); (iii) WC with 𝑔min = 10−2, 𝑔𝑡𝑖,𝑗,𝑓 = 𝑔𝑡𝑖,𝑗,𝑓 for all (𝑖, 𝑗, 𝑓 ) ∈  , and (𝜉, �̆�, �̆�) = (𝜉, 𝜎, 𝜂) = (4, 1∕2, 2) (green); (iv) NC with 𝑔min = 10−1 and 𝑔𝑡𝑖,𝑗,𝑓 = 𝛾𝑖,𝑗,𝑓
or all (𝑖, 𝑗, 𝑓 ) ∈  (red). In ordinate the square root of the cost function (28). For all controllers, 𝛥𝑐 = 𝑚 = 3 (Section 4.1). In all the simulations, the input is
iven by (57) (Profile 0 in Fig. 2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

aiting-times information direct the traffic coming from 𝗇 to the path (𝗇,𝖭,𝖣,𝖧, 𝖨, 𝖩), the traffic from 𝖺 toward the longer path
𝖺,𝖠,𝖣,𝖤,𝖡,𝖢, 𝖥, 𝖩), and the traffic coming from 𝗀 toward node 𝖪. In this way, these controllers divide the traffic into three different
on-intersecting paths, thus optimizing the flow.

. Conclusions

In this work, we have presented a proof of concept: showing to the drivers the information about the amount of time they
eed to wait while they are in a queue can yield significant improvement in the traffic behavior. In particular, we have developed a
acroscopic model where the drivers behave rationally and try to reach a specific destination reacting to the information provided in

he queues. This new model was employed to show that the additional information about the Expected Red Time Duration considerably
ecreases the length of the queues in the network. Furthermore, we designed a controller that exploits the driver reaction to the
rovided information obtaining an additional improvement. Therefore, we show that it is possible to decrease the congestion in the
raffic network by exploiting the rational behavior of the drivers and by providing them only local information about the traffic
ights.

We focused on the specific case where the only information provided to the drivers is local to their position in the network, and
hey integrate it with their experience in the network to make a decision.

In future development, this proof of concept will be extended to other information structures in which drivers have access to
ore global information using V2I communication. Furthermore, future research efforts will focus on the important theoretical and
ractical issues of providing stability guarantees and developing a decentralized implementation.
18
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Fig. 4. Table showing the mean value in the interval [200, 350] of the duty cycles for some sample lights obtained in the simulations of Fig. 3.

Fig. 5. Comparison between controllers subject to profile 1 in Fig. 2. In ordinate the square root of the cost function (28).

Fig. 6. Comparison between controllers subject to profile 2 in Fig. 2. In ordinate the square root of the cost function (28).
19
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Fig. 7. Comparison between controllers subject to profile 3 in Fig. 2. In ordinate the square root of the cost function (28).

Fig. 8. Comparison between controllers subject to profile 4 in Fig. 2. In ordinate the square root of the cost function (28).

Fig. 9. WC controller with 𝑔min = 10−2, 𝑔𝑡𝑖,𝑗,𝑓 = 𝑔𝑡𝑖,𝑗,𝑓 for all (𝑖, 𝑗, 𝑓 ) ∈  , and (𝜉, �̆�, �̆�) = (𝜉, 𝜎, 𝜂), for different values of 𝜉 and 𝜎. In all simulations, the input profile
0 (Eq. (57)) is used. (Left) Heatmap reporting the peak value of the square root of the cost function (28). (Right) Some sample trajectories. In ordinate the
square root of the cost function (28).
20
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Fig. 10. WC controller with 𝑔min = 10−2, 𝑔𝑡𝑖,𝑗,𝑓 = 𝑔𝑡𝑖,𝑗,𝑓 for all (𝑖, 𝑗, 𝑓 ) ∈  , and different values of 𝜉 and �̆�. In all simulations, (𝜉, 𝜎) = (4, 1∕2) in (18), and the input
profile 0 (Eq. (57)) is used. In ordinate the square root of the cost function (28).

Fig. 11. WC controller with 𝑔min = 10−2, 𝑔𝑡𝑖,𝑗,𝑓 = 𝑔𝑡𝑖,𝑗,𝑓 for all (𝑖, 𝑗, 𝑓 ) ∈  , and different values of 𝑁max. In all simulations, the input profile 0 (Eq. (57)) is used.
In ordinate the square root of the cost function (28).

Fig. 12. WC and NC controllers with 𝑔min = 10−2, 𝑔𝑡𝑖,𝑗,𝑓 = 𝑔𝑡𝑖,𝑗,𝑓 for all (𝑖, 𝑗, 𝑓 ) ∈  , and different values of the control horizon 𝑚. In all simulations, the input
profile 0 (Eq. (57)) is used. In ordinate the square root of the cost function (28).
21
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Fig. 13. Comparison between the same controller of Fig. 3 applied to the network of 1(b) in which 𝜁𝖺,𝖩, 𝜁𝗀,𝖩, and 𝜁𝑖,𝑞 (𝑡) = 0 for all other pairs (𝑖, 𝑞). In ordinate
the square root of the cost function (28). For all controllers, 𝛥𝑐 = 𝑚 = 3 (Section 4.1).

Fig. 14. Table showing the mean value in the interval [150, 350] of the duty cycles for some sample lights obtained in the simulations of Fig. 13.
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Appendix A. Proof of Lemma 1

Firstly, we can employ the constraint (14), in order to reduce A to

A2 ∶

⎧

⎪

⎨

⎪

⎩

min
∑

(𝑖,𝑗,𝑓 )∈

∑

𝑞∈⧵{𝑗}
𝐽 ′
𝑎
(

𝛼𝑖,𝑗,𝑓 ,𝑞
)

,

Subject to (12), and (13).

where

𝐽 ′ (𝛼
)

= 𝜇 𝛼 𝜌 + 𝛼 log 𝛼 ,
22
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A
A

A
A

A

A

A

B

B
B
B
B
C
C
C
C

C

and 𝛼𝑖,𝑗,𝑓 ,𝑗 = 0 for all (𝑖, 𝑗, 𝑓 ) ∈  as indicated in the constraint (14). Now, we can focus on the relaxed problem where the inequality
constraints (12) are removed. Hence, we want to solve

A3 ∶

⎧

⎪

⎨

⎪

⎩

min
∑

(𝑖,𝑗,𝑓 )∈

∑

𝑞∈⧵{𝑗}
𝐽 ′
𝑎
(

𝛼𝑖,𝑗,𝑓 ,𝑞
)

,

Subject to (13).

efining 𝐽 ′
𝑎 (0) = 0, the cost function and the constraints (13) are continuously differentiable functions in the compact set [0, 1]𝑛𝑝 .

For this reason and noticing that A3 presents only equality constraints, it is possible to solve A3 by using the method of Lagrange
multipliers. Therefore, we define the Lagrangian function as

𝐿 (𝛼, 𝜆) =
∑

(𝑖,𝑗,𝑓 )∈

∑

𝑞∈⧵{𝑗}
𝐽 ′
𝑎
(

𝛼𝑖,𝑗,𝑓 ,𝑞
)

+
∑

∀(𝑖,𝑗)∈

∑

∀𝑞∈⧵{𝑗}
𝜆𝑖,𝑗,𝑞

⎛

⎜

⎜

⎝

∑

𝑘∈𝑖,𝑗

𝛼𝑖,𝑗,𝑘,𝑞 − 1
⎞

⎟

⎟

⎠

where 𝜆 =
(

𝜆𝑖,𝑗,𝑞
)

(𝑖,𝑗)∈ ,𝑞∈⧵{𝑗} are the Lagrange multipliers. Then, the minimizer can be found by solving the system of equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕
𝜕𝛼𝑖,𝑗,𝑓 ,𝑞

𝐿 (𝛼, 𝜆) = 0, ∀ (𝑖, 𝑗, 𝑓 ) ∈  ,∀𝑞 ∈  ⧵ {𝑗} ,

𝜕
𝜕𝜆𝑖,𝑗,𝑞

𝐿 (𝛼, 𝜆) = 0, ∀ (𝑖, 𝑗) ∈  ,∀𝑞 ∈  ⧵ {𝑗} .

With some mathematical steps, we obtain

⎧

⎪

⎨

⎪

⎩

1 + log 𝛼𝑖,𝑗,𝑓 ,𝑞 + 𝜇𝜌𝑖,𝑗,𝑓 ,𝑞 + 𝜆𝑖,𝑗,𝑞 = 0 ∀ (𝑖, 𝑗, 𝑓 ) ∈  ,∀𝑞 ∈  ⧵ {𝑗} ,
∑

𝑘∈𝑖,𝑗

𝛼𝑖,𝑗,𝑘,𝑞 − 1 = 0, ∀ (𝑖, 𝑗) ∈  ,∀𝑞 ∈  ⧵ {𝑗} ,

whose solution is given by

𝛼𝑖,𝑗,𝑓 ,𝑞 =
exp

(

−𝜇𝜌𝑖,𝑗,𝑓 ,𝑞
)

∑

𝑘∈𝑖,𝑗

exp
(

−𝜇𝜌𝑖,𝑗,𝑘,𝑞
)
.

herefore, the solution of A3 satisfies the constraint (12). Hence, the solution of A3 is also the solution of A2. For this reason, the
olution of A is given by (16). ■

ppendix B. Proof of Lemmas 2 and 3

The optimization problems B1 (𝑡) and B̆1 (𝑡) are very similar to the optimization problem A2 defined in Appendix A and their
olution is obtained using the same process explained in Appendix A. ■
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