37 research outputs found
Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils
LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a
∼
7
-tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for
p
p
-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the
<
100
 
 
keV
energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout
Simulations of Events for the LUX-ZEPLIN (LZ) Dark Matter Experiment
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1-2) pb at a WIMP mass of 40 GeV/. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data
Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of 136Xe
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double beta decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to ^136Xe neutrinoless double beta decay, taking advantage of the significant (>600 kg) ^136Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of ^136Xe is projected to be 1.06×10^26 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with ^136Xe at 1.06×10^27 years
The LUX-ZEPLIN (LZ) Experiment
We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements
Projected sensitivity of the LUX-ZEPLIN experiment to the 0 ν β β decay of 136 Xe
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to 136 Xe neutrinoless double β decay, taking advantage of the significant ( > 600 kg) 136 Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of 136 Xe is projected to be 1.06 × 10 26 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with 136 Xe at 1.06 × 10 27 years