154 research outputs found

    Evolution of Small Scale Cosmological Baryon Perturbations and Matter Transfer Functions

    Get PDF
    The evolution of small scale cosmological perturbations is carefully re-examined. Through the interaction with photons via electrons, baryon perturbations show interesting behavior in some physical scales. Characteristic features of the evolution of baryon density fluctuations are discussed. In CDM models, it is found a power-law growing phase of the small-scale baryon density fluctuations, which is characterized by the terminal velocity, after the diffusion (Silk) damping and before the decoupling epoch. Then, a transfer function for total matter density fluctuations is studied by taking into account those physical processes. An analytic transfer function is presented, which is applicable for the entire range up to a solar mass scale in the high−z-z universe, and it is suitable also to the high baryon fraction models.Comment: 29 pages, LaTex, Submitted to Astrophysical Journa

    Stochastic Gravitational Wave Background originating from Halo Mergers

    Full text link
    The stochastic gravitational wave background (GWB) from halo mergers is investigated by a quasi-analytic method. The method we employ consists of two steps. The first step is to construct a merger tree by using the Extended Press-Schechter formalism or the Sheth & Tormen formalism, with Monte-Carlo realizations. This merger tree provides evolution of halo masses. From NN-body simulation of two-halo mergers, we can estimate the amount of gravitational wave emission induced by the individual merger process. Therefore the second step is to combine this gravitaional wave emission to the merger tree and obtain the amplitude of GWB. We find ΩGW∼10−19\Omega_{GW}\sim 10^{-19} for f∼10−17−10−16f\sim 10^{-17}-10^{-16} Hz, where ΩGW\Omega_{GW} is the energy density of the GWB. It turns out that most of the contribution on the GWB comes from halos with masses below 1015M⊙10^{15} M_\odot and mergers at low redshift, i.e., 0<z<0.80<z<0.8.Comment: 5 pages, 8 figures. Accepted for publication in Physical Review

    MAX 4 and MAX 5 CMB anisotropy measurement constraints on open and flat-Lambda CDM cosmogonies

    Full text link
    We account for experimental and observational uncertainties in likelihood analyses of cosmic microwave background (CMB) anisotropy data from the MAX 4 and MAX 5 experiments. These analyses use CMB anisotropy spectra predicted in open and spatially-flat Lambda cold dark matter cosmogonies. Amongst the models considered, the combined MAX data set is most consistent with the CMB anisotropy shape in Omega_0 ~ 0.1-0.2 open models and less so with that in old (t_0 >~ 15 - 16 Gyr, i.e., low h), high baryon density (Omega_B >~ 0.0175/h^2), low density (Omega_0 ~ 0.2 - 0.4), flat-Lambda models. The MAX data alone do not rule out any of the models we consider at the 2-sigma level. Model normalizations deduced from the combined MAX data are consistent with those drawn from the UCSB South Pole 1994 data, except for the flat bandpower model where MAX favours a higher normalization. The combined MAX data normalization for open models with Omega_0 ~ 0.1-0.2 is higher than the upper 2-sigma value of the DMR normalization. The combined MAX data normalization for old (low h), high baryon density, low-density flat-Lambda models is below the lower 2-sigma value of the DMR normalization. Open models with Omega_0 ~ 0.4-0.5 are not far from the shape most favoured by the MAX data, and for these models the MAX and DMR normalizations overlap. The MAX and DMR normalizations also overlap for Omega_0 = 1 and some higher h, lower Omega_B, low-density flat-Lambda models.Comment: Latex, 37 pages, uses aasms4 styl

    Investigating the role of the Itoigawa-Shizuoka tectonic line towards the evolution of the Northern Fossa Magna rift basin

    Get PDF
    AbstractThe Itoigawa-Shizuoka tectonic line (ISTL) fault system is considered to have one of the highest probabilities for a major inland earthquake occurrence in the whole of Japan. It is a complex fault system with the dip directions of the local fault segments changing from north to south between an east-dipping low-angle thrust fault, a strike slip fault and a west-dipping thrust fault. The tectonic relations between the different parts of the fault system and the surrounding geological units are yet to be fully explained. This study aims to reveal the juncture of the northern and central parts of the ISTL and investigate its contribution towards the shaping of the Northern Fossa Magna rift basin. We conducted 3 deployments of 1 or 2 linear arrays of seismic stations across the central and northern ISTL regions and observed local micro-earthquakes for a period of 3 years. Each deployment recorded continuous waveform data for approximately 3 months. Using arrival times of 1193 local earthquakes, we jointly determined earthquake locations and a 3D velocity model, applying the tomography method. We were able to image the regional crustal structures from the surface to a depth of 20km with a spatial resolution of 5km. Subsequently, we used the obtained 3D velocity model to relocate the background local seismicity from 2003 to 2009. The juncture of the northern and central parts of the ISTL was well constrained by our results. The depth extension of the northern parts of the ISTL fault segments follows the bottom of the Miocene Northern Fossa Magna rift basin (NFM) and forms an east-dipping low-angle fault. In contrast, the central parts of the ISTL fault segments are estimated to lie along the eastern boundary of the Matsumoto basin forming an oblique strike slip fault (Fig. 1)

    Jellyfish mucin may have potential disease-modifying effects on osteoarthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We aimed to study the effects of intra-articular injection of jellyfish mucin (qniumucin) on articular cartilage degeneration in a model of osteoarthritis (OA) created in rabbit knees by resection of the anterior cruciate ligament. Qniumucin was extracted from <it>Aurelia aurita </it>(moon jellyfish) and <it>Stomolophus nomurai </it>(Nomura's jellyfish) and purified by ion exchange chromatography. The OA model used 36 knees in 18 Japanese white rabbits. Purified qniumucin extracts from <it>S. nomurai </it>or <it>A. aurita </it>were used at 1 mg/ml. Rabbits were divided into four groups: a control (C) group injected with saline; a hyaluronic acid (HA)-only group (H group); two qniumucin-only groups (M groups); and two qniumucin + HA groups (MH groups). One milligram of each solution was injected intra-articularly once a week for 5 consecutive weeks, starting from 4 weeks after surgery. Ten weeks after surgery, the articular cartilage was evaluated macroscopically and histologically.</p> <p>Results</p> <p>In the C and M groups, macroscopic cartilage defects extended to the subchondral bone medially and laterally. When the H and both MH groups were compared, only minor cartilage degeneration was observed in groups treated with qniumucin in contrast to the group without qniumucin. Histologically, densely safranin-O-stained cartilage layers were observed in the H and two MH groups, but cartilage was strongly maintained in both MH groups.</p> <p>Conclusion</p> <p>At the concentrations of qniumucin used in this study, injection together with HA inhibited articular cartilage degeneration in this model of OA.</p

    ARGO CMB Anisotropy Measurement Constraints on Open and Flat-Lambda CDM Cosmogonies

    Full text link
    We use data from the ARGO cosmic microwave background (CMB) anisotropy experiment to constrain cosmogonies. We account for the ARGO beamwidth and calibration uncertainties, and marginalize over the offset removed from the data. Our derived amplitudes of the CMB anisotropy detected by the ARGO experiment are smaller than those derived previously. We consider open and spatially-flat-Lambda cold dark matter cosmogonies, with clustered-mass density parameter Omega_0 in the range 0.1-1, baryonic-mass density parameter Omega_B in the range (0.005-0.029)h^{-2}, and age of the universe t_0 in the range (10--20) Gyr. Marginalizing over all parameters but Omega_0, the ARGO data favors an open (spatially-flat-Lambda) model with Omega_0= 0.23 (0.1). However, these numerical values are model dependent. At the 2 sigma confidence level model normalizations deduced from the ARGO data are consistent with those drawn from the UCSB South Pole 1994, MAX 4+5, White Dish, and SuZIE data sets. The ARGO open model normalizations are also consistent with those deduced from the DMR data. However, for most spatially-flat-Lambda models the DMR normalizations are more than 2 sigma above the ARGO ones.Comment: 21 pages of latex. Uses aaspp4.sty. 8 figures included. ApJ in pres

    Cosmological Baryon Sound Waves Coupled with the Primeval Radiation

    Get PDF
    The fluid equations for the baryon-electron system in an expanding universe are derived from the Boltzmann equation. The effect of the Compton interaction is taken into account properly in order to evaluate the photon-electron collisional term. As an application, the acoustic motions of the baryon-electron system after recombination are investigated. The effective adiabatic index γ\gamma is computed for sound waves of various wavelengths, assuming the perturbation amplitude is small. The oscillations are found to be dumped when γ\gamma changes from between 1 (for an isothermal process) to 5/3 (for an adiabatic process).Comment: 20 pages, Revtex, Accepted for publication in Phys. Rev.

    The properties of bioengineered chondrocyte sheets for cartilage regeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage.</p> <p>Results</p> <p>The expression of SOX 9, collagen type 2, 27, integrin α10, and fibronectin genes in triple-layered chondrocyte sheets was significantly increased in comparison to those in conventional monolayer culture and in a single chondrocyte sheet, implying a nature similar to ordinary cartilage. In addition, immunohistochemistry demonstrated that collagen type II, fibronectin, and integrin α10 were present in the triple-layered chondrocyte sheets.</p> <p>Conclusion</p> <p>The results of this study indicate that these chondrocyte sheets with a consistent cartilaginous phenotype and adhesive properties may lead to a new strategy for cartilage regeneration.</p
    • …
    corecore