92 research outputs found
Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata)
BACKGROUND: The infraorder Gekkota is intriguing because it contains multiple chromosomal and environmental sex determination systems that vary even among closely related taxa. Here, we compare male and females karyotypes of the pink-tailed worm-lizard (Aprasia parapulchella), a small legless lizard belonging to the endemic Australian family Pygopodidae. RESULTS: We applied comparative genomic hybridization to reveal an XX/XY sex chromosome system in which the Y chromosome is highly differentiated from the X in both gross morphology and DNA sequence. In addition, FISH mapping has revealed that two microsatellite repeat motifs, (AGAT)n and (AC)n, have been amplified multiple times on the Y chromosome. CONCLUSION: XY karyotypes are found in other pygopodids (Delma inornata and Lialis burtonis), suggesting that the common ancestor of Pygopodidae also had XY sex chromosomes. However, the morphology and size of the Y chromosomes are different among the three species, suggesting that the processes underlying the evolution of sex chromosomes in the Pygopodidae involved chromosome rearrangements and accumulation and amplification of repeats
Taxonomy and conservation of grassland earless dragons:New species and an assessment of the first possible extinction of a reptile on mainland Australia
Taxonomic research is of fundamental importance in conservation management of threatened species, providing an understanding of species diversity on which management plans are based. The grassland earless dragon lizards (Agamidae: <i>Tympanocryptis</i>) of south-eastern Australia have long been of conservation concern but there have been ongoing taxonomic uncertainties. We provide a comprehensive taxonomic review of this group, integrating multiple lines of evidence, including phylogeography (mtDNA), phylogenomics (SNPs), external morphology and micro x-ray CT scans. Based on these data we assign the lectotype of <i>T. lineata</i> to the Canberra region, restrict the distribution of <i>T. pinguicolla</i> to Victoria and name two new species: <i>T. osbornei sp. nov.</i> (Cooma) and <i>T. mccartneyi sp. nov.</i> (Bathurst). Our results have significant conservation implications. Of particular concern is <i>T. pinguicolla</i>, with the last confident sighting in 1969, raising the possibility of the first extinction of a reptile on mainland Australia. However, our results are equivocal as to whether <i>T. pinguicolla</i> is extant or extinct, emphasizing the immediate imperative for continued surveys to locate any remaining populations of <i>T. pinguicolla</i>. We also highlight the need for a full revision of conservation management plans for all the grassland earless dragons
Diversity of reptile sex chromosome evolution revealed by cytogenetic and linked-read sequencing
Reptile sex determination is attracting much attention because the great diversity of sex-determination and dosage compensation mechanisms permits us to approach fundamental questions about mechanisms of sex chromosome turnover. Recent studies have made significant progress in better understanding diversity and conservation of reptile sex chromosomes, with however no reptile master sex determination genes identified. Here we describe an integrated genomics and cytogenetics pipeline, combining probes generated from the microdissected sex chromosomes with transcriptome and genome sequencing to explore the sex chromosome diversity in non-model Australian reptiles. We tested our pipeline on a turtle, two species of geckos, and a monitor lizard. Genes identified on sex chromosomes were compared to the chicken genome to identify homologous regions among the four species. We identified candidate sex determining genes within these regions, including conserved vertebrate sex-determining genes pdgfa, pdgfra amh and wt1, and demonstrated their testis or ovary-specific expression. All four species showed gene-by-gene rather than chromosome-wide dosage compensation. Our results imply that reptile sex chromosomes originated by independent acquisition of sex-determining genes on different autosomes, as well as translocations between different ancestral macro- and microchromosomes. We discuss the evolutionary drivers of the slow differentiation and turnover of reptile sex chromosomes
Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology
Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission (molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37-45%). The median Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42-62%). Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density) determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by local spatial, social, density and individual factors, rather than resources. This enhanced understanding has implications for the control of diseases in wildlife populations. Attempts to manage wildlife disease using simplistic density approaches do not acknowledge the complexity of disease ecology
Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1
Background: Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. Results: We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a ZZ/ZW sex microchromosome system. This contig contains five protein coding genes (oprd1, rcc1, znf91, znf131, znf180), and major families of repetitive sequences with a high number of copies of LTR and non-LTR retrotransposons, including the CR1 and Bov-B LINEs. The two genes, oprd1 and rcc1 are part of a homologous syntenic block, which is conserved among amniotes. While oprd1 and rcc1 have no known function in sex determination or differentiation in amniotes, this homologous syntenic block in mammals and chicken also contains R-spondin 1 (rspo1), the ovarian differentiating gene in mammals. In order to explore the probability that rspo1 is sex determining in dragon lizards, genomic BAC and cDNA clones were mapped using fluorescence in situ hybridisation. Their location on an autosomal microchromosome pair, not on the ZW sex microchromosomes, eliminates rspo1 as a candidate sex determining gene in P. vitticeps. Conclusion: Our study has characterized the largest contiguous stretch of physically mapped sex chromosome sequence (352 kb) from a ZZ/ZW lizard species. Although this region represents only a small fraction of the sex chromosomes of P. vitticeps, it has revealed several features typically associated with sex chromosomes including the accumulation of large blocks of repetitive sequences
The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study
AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
DNA DETECTION OF FOXES TO PREVENT ESTABLISHMENT IN TASMANIA
The red fox (Vulpes vulpes) has wreaked havoc on mainland Australia’s environment and agricultural production since its introduction in the 1870s. Over the same period, the southern Australian island State of Tasmania has remained virtually fox-free, allowing its unique biodiversity to remain relatively pristine. Recently, an unknown number of foxes were deliberately or accidentally introduced to Tasmania. Some of those animals and possibly their progeny now live in the wild in Tasmania. Finding foxes in a state the size of Tasmania presents special problems for wildlife managers, but is essential to prevent their establishment in this stronghold for Australian marsupials. To assist in finding foxes in Tasmania, we have developed DNA detection approaches specifically for foxes that utilize the ubiquitous mitochondrial DNA found on the surface of mammal scats. Using these approaches, fox DNA has been detected in three different regions in Tasmania and have provided the basis for intense control efforts in those areas. We are now expanding our approach to include other predatory mammals of interest (including both native marsupials and other introduced mammals) and increasing the breadth and scope of our surveys
- …