24,143 research outputs found

    Field Effect Transistor from Dispersion Polymerized Aniline

    Get PDF

    Flavour-Condensate-induced Breaking of Supersymmetry in Free Wess-Zumino Fluids

    Full text link
    Recently we argued that a particular model of string-inspired quantum space-time foam (D-foam) may induce oscillations and mixing among flavoured particles. As a result, rather than the mass-eigenstate vacuum, the correct ground state to describe the underlying dynamics is the flavour vacuum, proposed some time ago by Blasone and Vitiello as a description of quantum field theories with mixing. At the microscopic level, the breaking of target-space supersymmetry is induced in our space-time foam model by the relative transverse motion of brane defects. Motivated by these results, we show that the flavour vacuum, introduced through an inequivalent representation of the canonical (anti-) commutation relations, provides a vehicle for the breaking of supersymmetry (SUSY) at a low-energy effective field theory level; on considering the flavour-vacuum expectation value of the energy-momentum tensor and comparing with the form of a perfect relativistic fluid, it is found that the bosonic sector contributes as dark energy while the fermion contribution is like dust. This indicates a strong and novel breaking of SUSY, of a non-perturbative nature, which may characterize the low energy field theory of certain quantum gravity models.Comment: Discussion added in sections II and IV on quantum-gravity induced flavour mixing, references added, conclusions unchange

    Cosmology in a supersymmetric model with gauged BLB-L

    Full text link
    We consider salient cosmological features of a supersymmetric model which is Left-Right symmetric and therefore possessing gauged BLB-L symmetry. The requirement of breaking parity and also obtaining charge preserving vacua introduces some unique features to this model (MSLRM), resulting in a preference for non-thermal Leptogenesis. Assuming that the model preserves TeV scale supersymmetry, we show that the vacuum structure generically possesses domain walls, which can serve two important purposes. They can signal a secondary inflation required to remove unwanted relics such as gravitino and moduli and also generate lepton asymmetry by a mechanism similar to electroweak baryogenesis. The requirement of disappearance of domain walls imposes constraints on the soft parameters of the theory, testable at the TeV scale. We also propose an alternative model with spontaneous parity violation (MSLR\rlap/P). Incorporating the same cosmological considerations in this case entails constraints on a different set of soft parameters.Comment: 18 pages. Minor changes in text, but conclusion remains same. Published in Phys. Rev.

    Enhanced Shot Noise in Tunneling through a Stack of Coupled Quantum Dots

    Get PDF
    We have investigated the noise properties of the tunneling current through vertically coupled self-assembled InAs quantum dots. We observe super-Poissonian shot noise at low temperatures. For increased temperature this effect is suppressed. The super-Poissonian noise is explained by capacitive coupling between different stacks of quantum dots

    Sub-leading contributions to the black hole entropy in the brick wall approach

    Get PDF
    [Abridged] We compute the canonical entropy of a quantum scalar field around static and spherically symmetric black holes through the brick wall approach at the higher orders (in fact, up to the sixth order in \hbar) in the WKB approximation. We explicitly show that the brick wall model generally predicts corrections to the Bekenstein-Hawking entropy in all spacetime dimensions. In four dimensions, we find that the corrections to the Bekenstein-Hawking entropy are of the form (A^n \log A), while, in six dimensions, the corrections behave as (A^m + A^n \log A), where A denotes the area of the black hole event horizon, and (m, n) < 1. We compare our results with the corrections to the Bekenstein-Hawking entropy that have been obtained through the other approaches in the literature, and discuss the implications.Comment: 21 pages, Revtex 4; Final verson - 22 pages, References added, Accepted in Phys. Rev.

    CMB Anisotropy in the Decaying Neutrino Cosmology

    Get PDF
    It is attractive to suppose for several astrophysical reasons that the universe has close to the critical density in light (~30 eV) neutrinos which decay radiatively with a lifetime of ~10^{23} sec. In such a cosmology the universe is reionized early and the last scattering surface of the cosmic microwave background significantly broadened. We calculate the resulting angular power spectrum of temperature fluctuations in the cosmic microwave background. As expected the acoustic peaks are significantly damped relative to the standard case. This would allow a definitive test of the decaying neutrino cosmology with the forthcoming MAP and PLANCK surveyor missions.Comment: 4 pages (uses mn.sty) incl. 4 figures (epsf); Changes: additional clarifying remarks; Accepted for publication in MNRA

    A unified approach to combinatorial key predistribution schemes for sensor networks

    Get PDF
    There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario

    The hbar Expansion in Quantum Field Theory

    Full text link
    We show how expansions in powers of Planck's constant hbar = h/2\pi can give new insights into perturbative and nonperturbative properties of quantum field theories. Since hbar is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the hbar expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of hbar. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of hbar, then each loop in perturbation theory brings a factor of hbar. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in hbar. The connection between the number of loops and factors of hbar is more subtle for bound states since the binding energies and bound-state momenta themselves scale with hbar. The hbar expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in hbar and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.Comment: 8 pages, 1 figure. Version to be published in Phys. Rev.
    corecore