71 research outputs found

    Design, Engineering, and Experimental Analysis of a Simulated Annealing Approach to the Post-Enrolment Course Timetabling Problem

    Full text link
    The post-enrolment course timetabling (PE-CTT) is one of the most studied timetabling problems, for which many instances and results are available. In this work we design a metaheuristic approach based on Simulated Annealing to solve the PE-CTT. We consider all the different variants of the problem that have been proposed in the literature and we perform a comprehensive experimental analysis on all the public instances available. The outcome is that our solver, properly engineered and tuned, performs very well on all cases, providing the new best known results on many instances and state-of-the-art values for the others

    Multi-neighborhood simulated annealing for the capacitated facility location problem with customer incompatibilities

    Get PDF
    We consider the Capacitated Facility Location Problem with Customer Incompatibilities, which is a recently -proposed variant of the classic facility location problem whose distinctive feature is to take into account incompatibilities between customers. We tackle this problem using local search and we propose a combination of neighborhoods and ad hoc techniques to reduce the size of the search space, in order to effectively deal with large instances. The resulting multi-neighborhood approach is guided by a simulated annealing procedure. Our method, suitably tuned in a statistically-principled way, has been able to outperform all previous techniques on the publicly available dataset, on both short and long running times

    Tabu search techniques for the heterogeneous vehicle routing problem with time windows and carrier-dependent costs

    Get PDF
    Abstract In this work we formalize a new complex variant of the classical vehicle routing problem arising from a real-world application. Our formulation includes a heterogeneous fleet, a multi-day planning horizon, a complex carrier-dependent cost function for the vehicles, and the possibility of leaving orders unscheduled. We propose a metaheuristic approach based on tabu search and on a complex combination of neighborhood relations. Finally, we perform an experimental analysis to tune and compare different combinations, highlighting the most important features of the algorithm.

    Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem

    Full text link
    We consider the university course timetabling problem, which is one of the most studied problems in educational timetabling. In particular, we focus our attention on the formulation known as the curriculum-based course timetabling problem, which has been tackled by many researchers and for which there are many available benchmarks. The contribution of this paper is twofold. First, we propose an effective and robust single-stage simulated annealing method for solving the problem. Secondly, we design and apply an extensive and statistically-principled methodology for the parameter tuning procedure. The outcome of this analysis is a methodology for modeling the relationship between search method parameters and instance features that allows us to set the parameters for unseen instances on the basis of a simple inspection of the instance itself. Using this methodology, our algorithm, despite its apparent simplicity, has been able to achieve high quality results on a set of popular benchmarks. A final contribution of the paper is a novel set of real-world instances, which could be used as a benchmark for future comparison

    Educational timetabling: Problems, benchmarks, and state-of-the-art results

    Get PDF
    We propose a survey of the research contributions on the field of Educational Timetabling with a specific focus on “standard” formulations and the corresponding benchmark instances. We identify six of such formulations and we discuss their features, pointing out their relevance and usability. Other available formulations and datasets are also reviewed and briefly discussed. Subsequently, we report the main state-of-the-art results on the selected benchmarks, in terms of solution quality (upper and lower bounds), search techniques, running times, and other side settings

    Solving the medical student scheduling problem using simulated annealing

    Get PDF
    We consider the medical student scheduling (MSS) problem, which consists of assigning medical students to internships of different disciplines in various hospitals during the academic year to fulfill their educational and clinical training. The MSS problem takes into account, among other constraints and objectives, precedences between disciplines, student preferences, waiting periods, and hospital changes. We developed a local search technique, based on a combination of two different neighborhood relations and guided by a simulated annealing procedure. Our search method has been able to find the optimal solution for all instances of the dataset proposed by Akbarzadeh and Maenhout (Comput Oper Res 129: 105209, 2021b), in a much shorter runtime than their technique. In addition, we propose a novel dataset in order to test our technique on a more challenging ground. For this new dataset, which is publicly available along with our source code for inspection and future comparisons, we report the experimental results and a sensitivity analysis

    The Second International Nurse Rostering Competition

    Get PDF
    This paper reports on the Second International Nurse Rostering Competition (INRC-II). Its contributions are (1) a new problem formulation which, differently from INRC-I, is a multi-stage procedure, (2) a competition environment that, as in INRC-I, will continue to serve as a growing testbed for search approaches to the INRC-II problem, and (3) final results of the competition. We discuss also the competition environment, which is an infrastructure including problem and instance definitions, testbeds, validation/simulation tools and rules. The hardness of the competition instances has been evaluated through the behaviour of our own solvers, and confirmed by the solvers of the participants. Finally, we discuss general issues about both nurse rostering problems and optimisation competitions in general.PostprintPeer reviewe
    corecore