233 research outputs found

    Fluidization of Group B particles with a rotating distributor

    Get PDF
    A novel rotating distributor fluidized bed is presented. The distributor is a rotating perforated plate, with 1% open-area ratio. This work evaluates the performance of this new design, considering pressure drop, Δp, and quality of fluidization. Bed fluidization was easily achieved with the proposed device, improving the solid mixing and the quality of fluidization. In order to examine the effect of the rotational speed of the distributor plate on the hydrodynamic behavior of the bed, minimum fluidization velocity, Umf, and pressure fluctuations were analyzed. Experiments were conducted in the bubbling free regime in a 0.19 m i.d. fluidized bed, operating with Group B particles according to Geldart's classification. The pressure drop across the bed and the standard deviation of pressure fluctuations, σp, were used to find the minimum fluidization velocity, Umf. A decrease in Umf is observed when the rotational speed increases and a rise in the measured pressure drop was also found. Frequency analysis of pressure fluctuations shows that fluidization can be controlled by the adjustable rotational speed, at several excess gas velocities. Measurements with several initial static bed heights were taken, in order to analyze the influence of the initial bed mass inventory, over the effect of the distributor rotation on the bed hydrodynamics.Publicad

    Thermal analysis and optimization of a heat regenerator composed of two coupled moving bed heat exchangers

    Get PDF
    This work presents a study to optimize the performance of a heat regenerator composed by two coupled moving bed heat exchangers (MBHE). A MBHE is used to recover heat, from a hot gas stream, and the other one is used to preheat an air stream. A direct application might be a gasifier. The heat exchangers performance was studied in two cases, considering or not the conduction heat transfer in the solid phase. When the solid conduction is taken into account, a numerical solution is obtained, while an analytical solution is possible when the conduction terms are neglected. In both cases, the optimum values of bed length (in the air flow direction) and particle diameter were obtained from an exergy point of view. Finally, an energy optimization of the heat regenerator was carried out, obtaining the optimal heat regenerator dimensions as a function of gas velocity and gas flow rate.Publicad

    Solar flux distribution on central receivers: A projection method from analytic function

    Get PDF
    This paper presents a methodology to project the flux distribution from the image plane into the panels of any central receiver in Solar Power Tower plants. Since analytic functions derived from the convolution approach are conveniently defined on the image plane, its oblique projection solves the distorted spot found in actual receivers. Because of its accuracy describing the flux distribution due to rectangular focusing heliostats, we make use of the analytic function on the image plane by Collado et al. (1986). Based on the projection method, we have developed a computer code successfully confronted against PSA measurements and SolTrace software, either for flat plate or multi-panel cylindrical receivers. The validated model overcomes the computation time limitation associated to Monte Carlo technique, with a similar accuracy and even higher level of resolution. For each heliostat in a field, the spillage is computed besides the rest of optical losses; parallel projection is used for shading and blocking. The resulting optical performance tool generates the flux map caused by a whole field of heliostats. A multi-aiming strategy is investigated on the basis of the radius of the reflected beams, estimated from error cone angles.Publicad

    Exergy optimization in a steady moving bed heat exchanger

    Get PDF
    Proceedings of: Interdisciplinary Transport Phenomena V: Fluid, Thermal, Biological, Materials and Space Sciences (ITP 2007), 14-19 of October, 2007, Bansko, Bulgaria (Oral paper nÂș 70)This work provides an exergy analysis of a moving bed heat exchanger to obtain for a range of incoming fluid flow rates the operational optimum and the incidence on it of the relevant parameters such as the dimensions of the exchanger, the particle diameter and the flow rate of the fluid. The MBHE proposed can be analyzed as a cross flow heat exchanger where one of the phases is a moving granular medium. In the present work the exergy analysis of the MBHE is carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady state problem and the analytical solution of the simplified (avoiding conduction terms) equations. The numerical simulation is carried over the two steady energy equations (fluid and solid), involving for the solid the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The analytical solution is the wellknown solution of the simplified problem neglecting conduction effects.Publicad

    Techno-economic analysis of integrating sweet sorghum into sugar mills: The Central American case

    Get PDF
    This paper aims to evaluate the potential for electricity and ethanol production in Central America using sweet sorghum, performing a techno-economic analysis. The study proposes the integration of sweet sorghum into Central American sugar mills, by using the existing machinery to process this crop during off-season. A process simulation and a cost model were developed to estimate the technical and economical feasibility of sweet sorghum integration. The data on various parameters used for techno-economic assessment were collected from an existing sugar mill and distillery in Central America. The results show that a sugar mill operating 2 months during off-season could obtain an average revenue of US3Mforacrushingrateof6500t/d.Ethanolproductioncostsareestimatedtobe24.76ÂąUS 3 M for a crushing rate of 6500 t/d. Ethanol production costs are estimated to be 24.76 ÂąUS/L. In case a new CHP plant is built, a sugar mill operating under the integrated scenario would have a payback period of 4.49 years, as compared to 7.47 years for a sugar mill using sugarcane bagasse as the only fuel. Although several studies highlight the potential of sweet sorghum for ethanol production, the results from this work prove that sweet sorghum must also be seen as a viable feedstock for electricity production. A sensitivity analysis was also performed to determine the variation of the average cost of electricity and ethanol with the variables used in the economic analysis. For all analysed scenarios the effects of installed capacity and crop yield prevailed over the increasing costs of land and transportation.Publicad

    Coherent structures and bubble-particle velocity in 2-D fluidized beds

    Get PDF
    This work presents an experimental study to characterize ascending bubbles and granular velocity in the dense phase of a 2-D fluidized bed. Three different non-intrusive techniques based on images obtained with a high speed camera are developed, and applied to the images. First the bubble paths are characterized with time-average concentration maps and the bubble velocities are obtained, using a tracking algorithm over the mass centers of the bubbles. Finally, a PIV (particle image velocimetry) method is used to characterize the particle velocity vectors. This procedure is repeated for different bed aspect ratios, and different superficial gas velocities. This study analyzes the superficial gas velocity influence on the bed behavior, and how the bubble path configuration depends on the bed aspect ratio. The PIV measurements give us information on the location of the recirculation regions and the influence of the superficial gas velocity.Publicad

    Modelling non-isothermal absorption of vapour into expanding liquid sheets

    Get PDF
    The problem of non isothermal absorption of vapour into freely expanding liquid sheets is addressed in this study. This is done in the context of four models that characterise the coupled heat and mass transfer in the liquid phase: a nonlinear model retaining the effect of sheet growth, an approximate model for slowly increasing mass flow rate in the sheet, a large Lewis number model and finally, a boundary layer model. These models have been numerically or analytically solved and applied to the comparative analysis of two different working pairs, LiBr H₂O and LiNO₃NH₃, under conditions representative of adiabatic absorption in refrigeration systems. The limits of applicability of each model have been assessed and the sensitivity of the results to the sheet aperture angle, heat of absorption and initial subcooling has also been tested. For equal initial mass fraction and subcooling, the models indicate that Sherwood number and the rate of absorption in laminar expanding sheets for the LiNO₃NH₃solution are always superior to those for the LiBr H₂O solutionThe authors wish to express their gratitude to Dr. M. Venegas for her useful comments. This work has been partially funded by the Spanish Government Research Grants DPI 2002 02439 and ENE 2005 08255 CO2 02, as well as by the Autonomous Community of Madrid & UC3M through CCG07 UC3M/AMB 3412 project. Their contribution is greatly appreciatedPublicad

    Thermal and mechanical stresses in bayonet tubes of solar central receivers working with molten salt and liquid sodium

    Get PDF
    One of the most promising technologies for solar thermal power are solar power towers (SPTs), in which direct solar radiation is redirected by heliostats to a receiver located on top of a tower. The technology used by SPT allows obtaining high thermal efficiencies as well as a high number of hours of operation thanks to thermal storage. However, the high thermal gradients to which the receiver is subjected, in addition to the corrosion of the molten solar salt, can cause the rupture of the receiver and this limits the maximum irradiation the receiver can withstand. To overcome this problem there are different strategies, such as the use of working fluids that are less corrosive than molten salts or the development of new designs of the receiver to avoid overheating of the pipes. In this work we analyze the thermal and structural behavior of a new design of SPT receiver in which bayonet tubes are used instead of simple tubes. A bayonet tube consists of a tube inside another one. In the bayonet tube the working fluid first circulates through the inner tube and then through the annular section between the tubes. An eccentric bayonet tube, created by displacing the inner tube with regards the outer tube, reduces the overheating of the fluid and the outer tube wall as will be shown later. Besides, this work also assesses the effect of using either molten salt or liquid sodium as a working fluid on the thermal and structural behavior of the absorber tube. Since the extreme thermal conditions of central receivers preclude a detailed experimental analysis, the analyses of the present work are performed through multi-physics (CFD – FEM) simulations of the working fluid flow in the annular section and the stresses in the outer wall of the bayonet tube, which are the most critical elements of the receiver. In particular, to perform the hydrodynamic and thermal analysis of the fluid section and the outer wall of the tube, the RANS equations of the fluid together with the turbulent RSM model and the head diffusion equation of the wall were solved using ANSYS Fluent v18 CFD code. Boundary conditions of temperature and non-uniform irradiation were selected to represent typical operative conditions of receivers. Subsequently, using the temperature profiles obtained from the CFD simulations for each working fluid, ANSYS Workbench v18 was employed to obtain the thermal and mechanical stresses in the outer tube as a function of its different constraints, including the attachment of the tube. The results obtained with the CFD – FEM simulations show that, regardless of the working fluid, the eccentricity of the bayonet tube decreases local peaks of temperature in the flow and temperature gradients in the outer tube wall, which leads to a reduction of the wall stresses of the SPT receiver. Furthermore, thanks to its high conductivity, liquid sodium is able to yield lower temperature gradients and stresses in the wall, independently of the kind of tube, compared to molten salt

    Gas-solid conversion in fluidised bed reactors

    Get PDF
    Asimplified model for gas–solid reactions in fluidised bed (FB) is proposed. Such models already exist for catalytic gas–solid reactions (CGSRs), providing general description of the system in terms of main governing parameters. Expansion of this approach to non-catalytic gas–solid reactions (NCGSRs) is difficult, because the solid reactant takes part in the reaction. Therefore, FB reactor models for NCGSR are usually devised only for specific cases, and a general analysis has not been presented up to date. The present model allows analysis of different types of NCGSR in a generalised way, handling catalytic reactions as a particular, simpler, case. It is shown that the reactor behaviour can be described by three governing dimensionless parameters. Two additional parameters, quantifying the importance of diffusion effects in single particles are also identified, and their impact on reactor behaviour is analysed. Possible simplifications are explored. Model limitations, that is, assumption of isothermal bed and particle and the occurrence of only one reaction, are discussed. Examples are outlined to show the applicability of the methodPublicad

    Voidage distribution around bubbles in a fluidized bed: influence on throughflow

    Get PDF
    In this work, a new method for measuring void fraction distribution around endogenous bubbles in a 2D fluidized bed is presented. The technique is based on illuminating a transparent-wall 2-dimensional bed with diffuse light from the rear and recording the distribution of light that penetrates the bed. The recording is made with a high speed video-camera, which gives frames with grey level corresponding to the light penetration and from which the voidage distribution around the bubbles can be determined. In this way, voidage distribution in the region very close to the bubble contour (r/Rbâ‰Č1.2) is obtained, which was not possible in previous studies due to limitations in spatial resolution. A correlation is proposed for the voidage at the contour of the bubble, with the voidage depending on the radial position and the polar angle Δ(r, Ξ). In addition, the effect of the voidage distribution on the throughflow crossing the bubbles was studied and an increase of 20% was determined for the average bubble geometry of the more than 100 bubbles analysedPublicad
    • 

    corecore