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Abstract 

This paper presents a methodology to project the flux distribution from the image plane into the panels 

of any central receiver in Solar Power Tower plants. Since analytic functions derived from the 

convolution approach are conveniently defined on the image plane, its oblique projection solves the 

distorted spot found in actual receivers. Because of its accuracy describing the flux distribution due to 

rectangular focusing heliostats, we make use of the analytic function on the image plane by Collado et 

al. (1986). Based on the projection method, we have developed a computer code successfully 

confronted against PSA measurements and SolTrace software, either for flat plate or multi-panel 

cylindrical receivers. The validated model overcomes the computation time limitation associated to 

Monte Carlo technique, with a similar accuracy and even higher level of resolution. For each heliostat 

in a field, the spillage is computed besides the rest of optical losses; parallel projection is used for 

shading and blocking. The resulting optical performance tool generates the flux map caused by a 

whole field of heliostats. A multi-aiming strategy is investigated on the basis of the radius of the 

reflected beams, estimated from error cone angles. 

Keywords: Solar power tower; Multi-panel cylindrical receiver; Flux density concentration; Oblique 

projection; Heliostat field optical efficiency; Multi-aiming strategy.  

mailto:asgonzal@ing.uc3m.es


2 
 

Nomenclature 

AH area of heliostat mirror [m2] 

ah, aw limits of the convolution integral [m] 

AR area of receiver [m2] 

C concentration ratio of flux density [-] 

DNI direct normal irradiance [W/m2] 

F solar flux density [W/m2] 

f optical loss factor [-] 

G origin of global coordinate system 

H center of heliostat mirror 

k aiming factor [-] 

N number [#] 

n normal unit vector 

Pinc Power incident on the receiver [W] 

r beam radius [m] 

SLR slant range [m] 

s unit vector pointing to the sun 

T target point 

t unit vector from H to T 

THT tower optical height [m] 

u, v, w unit vectors in X, Y, Z-direction 

X, Y, Z Cartesian coordinate axes 

x, y, z coordinates in X, Y, Z-direction [m] 

Greek symbols 
α azimuth angle [rad] 

Δx, Δy nodal spacing in X, Y-direction [m] 

ε elevation angle [rad] 

η optical efficiency [-] 

ξ, ζ linear transformation of x, y [m] 

ρ reflectivity [-] 

σ error, standard deviation [mrad] 

ω incidence angle [rad] 

Subscripts 
at atmospheric attenuation 

e effective 

eq receiver equator 

h heliostat 

i, j node index 
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int interception 

k·σ based on k·σe 

max maximum, peak 

mean mean, averaged 

p panel of the receiver 

pt target panel 

ref reflected 

sb shading and blocking 

sg global system of coordinates 

sh heliostat system of coordinates 

si image plane system of coordinates 

slp mirror slope 

st target system of coordinates 

sun sunshape 

trk heliostat tracking 

Superscripts 
field field of heliostats 

hor horizontal projection 

image projection into image plane 

losses optical losses 

p projection  
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1. Introduction 

In Central Receiver Systems (CRS), thousands of heliostats reflect solar radiation into the receiver. 

System design and optimization demand not only fast, but also accurate models to perform optical 

calculations. On the receiver surface, the distribution of flux density or its concentration ratio becomes 

the key outcome of these optical tools. 

Existing models are divided into two categories [1]: Monte Carlo Ray Tracing (MCRT) and 

convolution methods. The first one is a statistical approach that traces a bundle of random rays from 

the sun. The more rays are traced the higher precision is achieved, but also higher computational cost, 

unaffordable for design and optimization studies. On the other hand, convolution methods rely on the 

mathematical superposition of error cones, namely: sunshape, concentration and mirror errors. While 

several approaches have been proposed to solve the convolution integral, all of them are faster than 

MCRT techniques. 

Numerical resolution of the convolution integral with Fourier transform has been implemented in 

HELIOS code [2]. Such a resolution is highly accurate, but not fast enough for system design. 

Otherwise, the convolution integral can be solved analytically under certain assumptions, leading to an 

analytic expression for the flux density on the image plane, faster to evaluate. Lipps and Walzel [3] 

found an exact analytic result for flat (i.e. non-focusing) polygonal heliostats. Similarly, by means of 

analytic integration over a linearly mapped domain, Collado et al. [4] obtained an analytical 

expression based on the error function, which is suitable for rectangular focused heliostats. Such a 

model has been recently named UNIZAR [5]. 

Other authors have found approximate solutions for the flux density on the image plane. Assuming a 

Gaussian behavior for all error cones, a single circular normal distribution has been proposed [6]. 

Unlike other models, this simplified one can handle the astigmatism effect produced by off-axis 

aberration. The circular normal distribution has been implemented in HFLCAL code, which performs 

either optical or optimization simulations.  

Walzel et al. [7] proposed a sixth order Hermite polynomial to represent the flux density on the image 

plane from flat heliostats. Its precision increases for small and distant heliostats. For focusing 

heliostats, a faceted heliostat composed of flat canted mirrors can be considered. Walzel’s function has 

been implemented in DELSOL3 code [8], that takes a representative heliostat for each field sector, 

thus decreasing considerably computation time. In addition to optical performance calculations, 

DELSOL3 carries out optimization analysis scaling results from the performance run.  

It has been detected a need for models to accurately predict the solar flux density on actual cylindrical 

receivers caused by an entire field of focusing heliostats. Since analytic functions are adequately 

defined on the image plane, we propose an oblique projection onto the receiver panels. This way, the 
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heliostat image shape is distorted appropriately. The analytic function on the image plane by UNIZAR 

has been adopted because of its accurate distribution of the solar flux density reflected by rectangular 

focusing heliostats.  

A computer code has been developed based on the oblique projection methodology, which is 

described in the following section. Then, the model is first validated for flat plate receivers and 

secondly for cylindrical receivers, using experimental flux distributions and MCRT simulations. After 

validation of individual heliostats, the model is extended to an entire heliostat field, accounting for all 

the optical loss factors. At the end, flux maps are generated for several aiming strategies.  
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2. Model based on projection 

Analytic functions are usually defined on the plane normal to the central reflected ray and centered in 

the target point. This plane, named image plane, rarely coincides with any receiver plane. Therefore an 

appropriate transformation is claimed, namely oblique projection. 

In this paper, we propose a methodology to project the solar flux density distribution from the image 

plane onto the receiver surfaces. The suggested procedure, summarized in Fig. 1, consists of four 

steps: 

1. Receiver panels are discretized in a mesh of equally spaced nodes. 

2. Mesh nodes are projected onto the image plane in the direction of the central reflected ray. 

3. The analytic function is evaluated at the nodes on the image plane.  

4. Flux density at image nodes is multiplied by the cosine of the incidence angle on the receiver. 

 

Fig. 1: Methodology of the model based on projection. 

Since the ultimate goal is to project the flux distribution from the image plane to the receiver, an 

alternative procedure could be argued: first discretize the image plane and then project onto the 

receiver. Although the same goal is achieved, our proposed method offers several advantages. The 

discrete domain is strictly limited to the surfaces of interest, avoiding useless nodes. A unique mesh 

for the receiver also facilitates the sum of fluxes from the whole heliostat field.  

The proposed model and, particularly, the projection step lead to three-dimensional geometric 

transformations, involving operations with vectors and matrices. A computer code has been 

developed, which deals with all types of central receivers made up of flat panels, either cylindrical or 

flat plate. Cylindrical receivers consist of any number of panels arranged in a cylindrical shell. Figures 

in this section correspond to a receiver of six panels. Obviously, the methodology herein described 

also applies to flat plate and cavity receivers. 
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A formulation based on the concentration ratio of flux density (C) is advantageous. This dimensionless 

parameter can be seen as the number of suns impinging on the receiver, regardless of the instantaneous 

solar insolation. Strictly speaking, the concentration of flux density is the ratio of flux density (F) on 

the receiver to the direct normal irradiance (DNI) incident on the heliostat field. 

 C F DNI=   (1) 

In this section, we describe in detail the four steps of the suggested procedure. Prior to that, we define 

various coordinate systems. The computation of spillage losses is presented at the end of this section. 

2.1 Coordinate systems and transformations 

The global system of coordinates (denoted as sg) has its origin G in the base of the tower at ground 

level. The positive Xsg axis points east and the positive Ysg axis points north. As left handed coordinate 

system, the positive Zsg axis is directed to the zenith.  

Other Cartesian coordinate systems are locally placed. In each specific target point T on the receiver, a 

coordinate system (st) is defined. The XstYst plane is taken coplanar with the target panel, where the Xst 

axis is horizontal, the Yst axis is vertical and the Zst axis is outward normal to the panel. Also in T, a 

coordinate system referenced to the image plane (si) is set, as will be introduced in Section 2.3. 

For each heliostat, a coordinate system (sh) is defined with origin in the mirror center H. The XshYsh 

plane corresponds to the plane of the mirror and the Zsh axis is outward normal to the mirror plane. For 

conventional rectangular heliostats with azimuth-elevation tracking, the Ysh axis is parallel to the sides 

of the mirror and the Xsh axis remains horizontal as elevation axis. 

Figure 2 illustrates the coordinate systems above mentioned. Throughout this paper, u, v and w stand 

for the unit vectors in the positive directions of X, Y and Z axes, respectively. Subscripts indicate the 

corresponding coordinate system. 
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Fig. 2: Systems of coordinates. 

The unit vector s points to the sun and is calculated with the correlation stated in [9] depending upon 

day and solar time. For a given heliostat with mirror center in H, t is the unit vector directed toward 

the aim point T. Thus, vector t is in the direction of the central reflected ray. According to Snell’s law 

of reflection, the incident angle on the mirror equals the angle of reflection (ωh). Then, the bisector of 

s and t is the heliostat normal (nh), which coincides with wsh. 

 h sh
+

= =
+

s tn w
s t

  (2) 

An appropriate transformation from the global system of coordinates (sg) to the heliostat coordinate 

system (sh) can be defined. Such a transformation comprises the translation from G to H and two 

consecutive rotations: azimuth and elevation. The heliostat azimuth angle (αh) is zero for south 

orientation and positive in clockwise rotation, as shown in Fig. 3. The elevation angle (εh) is relative to 

the horizontal projection of the heliostat normal. Mathematically, the transformation from global to 

heliostat coordinates is expressed through the following matrix equation: 

 
h h x

h h h h h y

h h h h h zsh sg

x cos sin 0 x H
y sin ·sin cos ·sin cos y H
z sin ·cos cos ·cos sin z H

 −  +     
     

=      +
     
     −   −    +     

  (3) 

 

Fig. 3: Transformation from global to heliostat coordinate system. 

External receivers are made of a number p of flat panels. A practical way of numbering the receiver 

panels is convenient. Fig. 4 shows the panels counterclockwise numbered starting from the south. The 

computer code allows any number of panels for the receiver, even single flat plate receiver. 
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Fig. 4: Transformation from global to target coordinate system. 

For a given aim point T, another transformation from global (sg) to local (st) system of coordinates can 

be defined. Such a transformation comprises the translation from G to T and a rotation of angle αpt, 

which is the azimuth angle of the target panel. In matrix notation, this transformation is equivalent to 

the following equation: 

 
pt pt x

y

pt pt zst sg

x cos sin 0 x T
y 0 0 1 · y T
z sin cos 0 z T

   +   
    

= +    
     −  +    

  (4) 

Once the reference systems of coordinates have been established, the steps of the proposed model can 

be described in detail. 

2.2 Receiver discretization 

The first step of the suggested procedure (Fig. 1) is the discretization of the receiver surfaces, prior to 

its projection onto the image plane. Each receiver panel is discretized in a grid of nodes equally 

spaced. As schematically is illustrated in Fig. 5, the nodal spacing along horizontal and vertical 

directions is Δx and Δy, respectively. Because of geometric constrains, Δx and Δy cannot usually be 

exactly the same, although they approximate as much as possible (Δx ≈Δy). As usual, the finer the 

grid, the level of resolution increases, but also the computation time. 

Since nodes placed in the edge of two panels would belong to both, such an indetermination has been 

avoided. In practice, each node in the mesh is located in the center of a cell whose area is equal to 

Δx·Δy. 
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Fig. 5: Schematic discretization of a receiver panel. 

Every single node can be identified by indices [i,j,p]. The last index (p) represents the number of 

panel, following the counterclockwise numbering previously introduced. Indices i and j stand for the 

row and column position, respectively. For convenience, [i,j,p] indices start from the bottom left 

corner of each panel. 

Following the order described above, a 3D matrix is created for any parameter of interest. Then, the 

value in each node is stored in its corresponding position in the matrix. When referring to the 

concentration of flux density (C) in a generic node, the following notation is used: Ci,j,p. 

2.3 Mesh projection 

The projection step is the core of the present model. The projection of the receiver mesh is performed 

from the receiver itself to the image plane, which is perpendicular to the central reflected ray with t 

unit vector. The projection is easily done referring the nodal coordinates to the image plane system. 

The image system of coordinates (si), with origin in the target point T, matches the XsiYsi plane with 

the image plane. The Xsi axis is kept horizontal, as Xst axis. In the direction of the Zsi axis, the wsi unit 

vector is equivalent to the opposite of vector t. 

The transformation from target to image system of coordinates involves two rotations. The azimuth 

angle of rotation (αt) is that of –t referred to the normal of the target panel. And the elevation angle of 

rotation (εt) is that of t relative to its horizontal projection. The positive rotation angles are displayed in 

Fig. 6, along with the target and the image systems of coordinates. In matrix notation, the 

transformation from target to image coordinate system is developed through the following equation: 

 
t t

t t t t t

t t t t tsi st

x cos 0 sin x
y sin ·sin cos cos ·sin · y
z sin ·cos sin cos ·cos z

      
     

= −     
     
     −   −        

  (5) 
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Fig. 6: Transformation from target to image coordinate system. 

Once in image coordinate system, the projection of the receiver nodes onto the image plane is 

straightforward. While x and y coordinates remains fixed, the z coordinate drops to zero, thus reaching 

the image plane. Symbolizing the projection onto the image plane with the superscript image, the 

projection is algebraically equivalent to: 

 

image
si si
image
si si
image
si

x x
y y
z 0

=

=

=

  (6) 

At most, half of the receiver is visible from a heliostat position, while the other half is hidden. Hence, 

only the visible panels are projected onto the image plane. 

The opposite direction of the central reflected beam, -t, has been assumed as the direction of 

projection. Actually, due to the divergence of sun rays there is not a sole reflected beam direction, 

even though the central ray represents the mean and most probable beam direction. The deviation 

increases with the distance from image plane to the receiving surface. Known the sunshape error, for a 

typical receiver with 4 m of radius, the maximum error is about one centimeter. 

2.4 UNIZAR analytic function on the image plane 

Collado et al. [4] defined two analytic functions for the solar flux density, both on the image plane and 

on the plane of flat plate receivers. Since linear mapping was assumed, the precision at receiver plane 

decreases when the angle of incidence with the panel (ωp) increases. In other words, the image shape 

deformation found at the receiver is disregarded. Hence, the analytic function on the image plane has 

been adopted in the present study. 
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Hypothesis taken on UNIZAR model for the image plane represent adequately actual heliostats. The 

surface of rectangular heliostats is assumed to be continuous and spherical, being the focal length 

equal to the slant range (SLR). On-axis alignment is considered so that the astigmatic effect, 

experienced when the angle of incidence with the heliostat increases, is neglected. 

UNIZAR expression for the solar flux density is based on the standard error function (erf). Following 

a matrix notation where i and j are nodal indices, the concentration ratio of flux density on the image 

plane becomes: 

 
( )

( ) ( ) ( ) ( )image h
i , j ,p i , j ,p i , j ,p i , j ,p i , j ,p2

h

cosC · erf aw erf aw · erf ah erf ah
4· 1 cos


   =  + −  −  + −  −
   

− 
 (7) 

The cosine of the incidence angle is the dot product of unitary vectors: h h hcos · · = =n s n t . The 

variables ξi,j,p and ζi,j,p correspond to the linear transformation of xsi and ysi coordinates on the image 

plane, whereas aw and ah stand for the integration limits. These variables include in their definition 

the effective error (σe), which is the convolution of sunshape, mirror slope and heliostat tracking 

errors. Modeled these errors as circular Gaussian distributions whose standard deviations are σsun, σslp 

and σtrk, respectively, their convolution σe is also a circular normal distribution with standard 

deviation: 

 ( )2 2 2
e sun h slp trk2 1 cos =  + +   +   (8) 

Hereafter sunshape standard deviation is 2.51 mrad, which was measured at the PSA. Further details 

about UNIZAR functions can be found in references [4,5]. 

2.5 Flux density on the receiver and spillage 

The flux density in a node on the receiver is the same as that of its analogous node on the image plane, 

although affected by the angle of incidence with the receiver panel, ωp. Therefore, the concentration 

ratio in node [i,j] belonging to panel p satisfies: 

 image
i , j ,p i , j ,p pC C ·cos=    (9) 

Unfortunately, a portion of the flux reaching the image plane could not be intercepted by the receiver, 

incurring spillage losses. The intercept factor, fint, is the fraction of solar flux reflected by the heliostat 

actually blocked by the receiver. 

 int
·
·ref

F ARf
F AH

=  (10) 
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where F is the mean flux density on the receiver, AR is the area of the receiver, AH is the mirror area 

of the heliostat, and: Fref=DNI·cosωh. The intercept factor is an outcome of the calculation of C. In 

terms of concentration of flux density in each node of the receiver, the above equation can be 

computed as: 

 
i , j ,p

i , j ,p
int

h

C · x· y
f

cos ·AH

 

=



  (11) 

where Δx and Δy are the horizontal and vertical spacing between nodes in the receiver. We can 

conclude that the intercept factor is a measure of not only the spillage, but also the loss due to the 

incidence angle on the receiver, implicit in the definition of C.   
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3. Validation for flat plate receivers 

The proposed model has been first validated for a flat plate receiver, which is the simplest case of 

external receiver. Our model has been confronted against experimental measurements from Plataforma 

Solar de Almería (PSA) and simulation results from SolTrace software, developed by the National 

Renewable Energy Laboratory [10].  

The Monte Carlo Ray Tracing (MCRT) technique solves the solar energy collection and transmission 

according to the following procedure [11]: the Sun, considered as a massive source of sunlight, emits 

sunlight rays containing the same energy to ensure uniform distribution of sunlight; the sunlight 

transmission consists of four independent sub-processes (emission, reflection, transmission and 

absorption) following a specific probability distribution. In the present work,  a bundle of 5 million 

random rays has been traced for each simulation. 

During July 2004, experimental measurements were carried out around noon time in the CRS facility 

at PSA [12]. The images produced by individual heliostats on the flat plate receiver, at 35.16 m height, 

were captured. The Martin-Marietta at PSA is a 39.9 m2 heliostat; 6.68 m width and 6.63 m height, but 

without mirror facets in a 0.66 m centered vertical strip. Three heliostat positions at PSA field have 

been selected for comparison, providing a wide variety of slant ranges and incidence angles on both 

the receiver panel (ωp) and the heliostat (ωh). For each  heliostat position, its name and geometrical 

parameters are listed in Table 1. The slope errors have been taken from previous fitting, where the 

tracking error was neglected [5]. 

Table 1: Parameters of selected PSA heliostats. 

 

 

 

In the following three Figures, the normalized flux distribution on the receiver obtained with the 

proposed model is compared to that of the measured image (a) and to the SolTrace simulation output 

(b). Since the measured images provide levels of intensity, rather than flux density, the results in this 

section are expressed in normalized flux density, i.e. F/Fmax. In each figure, the root mean square error 

(RMSE) between both contours is pointed out. 

Position 

name 

SLR, 

m 

cos ωp cos ωh σslp, 

mrad 

C2 165.3 0.936 0.822 0.80 

H61 100.0 0.716 0.895 1.40 

H11 59.9 0.714 0.950 2.10 
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Fig. 7: Contours of normalized flux due to heliostat C2. Comparison of the model with: a) PSA 

measurement and b) SolTrace simulation. 

The heliostat in position C2, Fig. 7, provides quasi-circular contours, where two symmetry axes can be 

envisaged. This shape is closely related to the standard error function used in the image plane. Since 

the solar reflected beam impacts nearly perpendicular to the receiver surface for this heliostat, such 

spot shape seems plausible.  

 

Fig. 8: Contours of normalized flux due to heliostat H61. Comparison of the model with: a) PSA 

measurement and b) SolTrace simulation. 

While increasing the incidence angle on the receiver, ωp, the distribution shape is stretched in the axis 

of the incident central ray, leading to quasi-elliptical contours, clearly evident in Fig. 8 and Fig. 9. For 

the positions in Table 1, the greater distortion is thus expected in heliostat H11. 
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Fig. 9: Contours of normalized flux due to heliostat H11. Comparison of the model with: a) PSA 

measurement and b) SolTrace simulation. 

Comparison between SolTrace and the suggested model shows excellent agreement. On-axis 

alignment has been considered in both codes, but the angle of incidence with the heliostat is a source 

of astigmatism [13]. Such aberration is not tackled in the model, whereas SolTrace simulates the real 

optical behavior. This methodological discrepancy can partially explain the 1.4% RMSE found in 

heliostat C2. 

Compared to the experimental images, Figs. a), the general patterns are followed, while particular 

deviations can be encountered. The RMSE between both curves is around 4% in heliostats C2 and 

H61, and increases up to 6% in heliostat H11. For the latter (Fig. 9), differences are more evident. On 

the other hand, near the aim point where the flux densities are higher, experimental isolines are closer 

to the center than predicted by the model, as well as SolTrace. 

Some disparities are associated with heliostat off-axis alignment, since heliostats were focused and 

canted for an aim point different to that during the experiments. Apart from heliostat alignment and 

experimental measurements uncertainty, other physical phenomena may explain spots measured. As 

an elastic structure, the heliostat frame deflects under wind and gravitational loads, affecting the beam 

optical quality [14]. Even temperature differences induce changes of curvature in the mirror facets, 

causing defocus [15]. 

Despite of acceptable experimental fluctuations, the proposed model can accurately predict the flux 

distribution on a flat plate receiver, independently of the incidence angle. For increasing incidence 

angles on the receiver, spot shapes are conveniently distorted likewise MCRT predictions. 
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4. Validation for multi-panel cylindrical receiver 

The proposed model has been validated for the most general case: cylindrical receivers formed by any 

number of panels. The results herein presented correspond to a 16-panels cylindrical receiver. For 

selected heliostats in a surround field, the flux density distribution calculated with the suggested model 

is compared to SolTrace simulations. 

A staggered heliostat field has been generated using the rules and parameters described in [16], 

assuming flat land. The field is composed of 3 zones with 35 heliostat in each row in the first zone. 

The densest heliostat field, not optimized, has been considered.  

The rectangular heliostats are 12.305 m width and 9.752 m height, representing 120m2 similarly to 

Gemasolar heliostats. For this kind of heliostat the errors of tracking, σtrk, and slope, σslp, are 2.1 and 

2.6 mrad, respectively [17]. The resulting field layout is shown in Fig. 10, where the resulting 4550 

heliostats are distributed in 43 rows. First row radius is 87.46 m, and last one is 676.17 m.  

The central receiver comprises 16 flat panels arranged around a cylindrical shell. For a cylinder of 8.5 

m diameter, each panel width is 1.6908 m. The receiver, and each panel, is 10.5 m in height. The 

tower optical height (THT), vertical distance from the heliostat mirror center to the receiver equator, is 

set to 120 m. 

 

Fig. 10: Field layout and selected heliostats. 
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Noon time of Julian day number 81, i.e. equinox, has been considered in the results herein presented. 

For instance, the field is located at 37.1º latitude north, as PSA facility. Therefore, the solar altitude is 

52.9º. 

Six heliostat positions have been selected, black dots in Fig. 8. For a middle row, the azimuth position 

is varied in four heliostats (a, b, c and d); where heliostat a corresponds to sun position and heliostat c 

to anti-sun. Maintaining the azimuth of heliostat d, heliostats e and f are near and farther to the 

receiver, respectively. For the above mentioned instant of time, the cosine of the solar incidence angle 

on each heliostat is indicated in Table 3, together with location parameters. 

Table 2: Location and incidence angle of selected heliostats. 

Heliostat Azimuth, 

deg 

Row  

radius, m 

SLR, 

m 

cos ωh 

a  0 324.49 341.91 0.598 

b -36 324.49 342.98 0.641 

c ±180 324.49 341.91 0.96 

d -108 324.49 341.96 0.853 

e -108 155.45 193.01 0.906 

f -108 662.58 669.15 0.814 

The distance between nodes in the receiver is 10 cm. This nodal spacing was selected from a 

compromise between CPU time and resolution. The gradient of concentration ratio between nodes is 

an indicator of such spatial resolution. For the near heliostat e, Fig. 11 illustrates the CPU time 

averaged over 10 realizations. For distances lower than 10 cm the computation time rapidly increases. 

On the other hand, the maximum gradient increases with the nodal spacing. 

 

Fig. 11: CPU time and maximum gradient for different distance between nodes. 
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Simulations have been carried out in an Intel® Core™ i5-2400 microprocessor at 3.10 GHz with 4GB 

of RAM memory. Given 10 cm between nodes, our code takes 0.81 s on average. On the other hand, 

SolTrace simulations with 5 million rays, in the limit of that hardware, lasts an average time of 43.5 s, 

using a single core in both cases. The average CPU time employed by SolTrace using 0.5, 1, 2 and 5 

millions of intercepted rays is represented in Fig. 12 for heliostat d at 342 m distance to the target 

point. Because it is a stochastic method, its accuracy and spatial resolution is dependent of amount of 

rays traced. Hence, the standard deviation of the power incident on the receiver, Pinc, based on 30 

realizations is taken as a measure of the exactitude. Such dispersion decreases when the more rays are 

traced. 

 

Fig. 12: CPU time and standard deviation of power incident on the receiver for different number of rays. 

Computational cost can be argued to use convolution methods in design and optimization studies. 

However, modern CPU improvements and automatic MCRT parallelization, currently implemented in 

SolTrace, is closing the gap between both techniques.  

The flux distribution from each selected heliostat is below showed. Results are expressed in terms of 

the concentration ratio of flux density, as defined in Eq. (1). Therefore, data are independent of 

instantaneous solar radiation. Since Eq. (9) is used, loss factors because of reflectivity, attenuation and 

shading and blocking have been neglected. 

For each individual heliostat, Fig. 13 shows the contours of flux density concentration on the unfolded 

surface of the receiver. Only the corresponding half visible side of the receiver is represented; each 

panel number is displayed at the top. Solid lines correspond to the present model, while dashed lines 

correspond to SolTrace simulation. 
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Fig. 13: Contours of concentration ratio of flux density for heliostats a, b, c, d, e and f. 

For the anti-sun position, heliostat c, contours lines by the model fit well the SolTrace simulation. 

Isolines seem to slightly separate when the heliostat cosine decreases. Even for the worst case, 

heliostat a, differences are not significant. Astigmatic aberrations, solved by SolTrace, are again the 

error source. 
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Despite the differences commented in the paragraph above, the proposed model follows the shapes 

simulated with SolTrace. For the same row, the heliostats in the position of sun (a) and anti-sun (c) 

produce similar image shapes, while the former is wider. Heliostats in intermediate positions (b and d) 

lead to image sizes between those, and rotated at the same time. 

For a given azimuth angle, the heliostat image is smaller the closer the heliostat is to the receiver (e). 

Differences between the model and MCRT simulation emerge when the slant range increases. As 

beam diameter at the focus broadens, 5 million rays do not provide enough resolution, which explains 

the ripples found in SolTrace isolines for heliostat f. In the side panels where the incidence angle is 

larger, image shapes are distorted as anticipated for flat plate receivers. 

The intercept factor calculated with Eq. (11) has been compared to SolTrace output (Table 3). For the 

selected heliostats, this factor is underestimated by the model, even though deviations do not reach 

2%. Insignificant underestimation is also found in the average and peak concentration ratios, listed in 

Table3.  

Table 3: Intercept factor, mean and peak concentration ratio for the model and SolTrace. 

Heliostat fint Cmean Cmax 

Model SolTrace Model SolTrace Model SolTrace 

a 0.917 0.933 0.463 0.472 1.985 2.028 

b 0.928 0.939 0.503 0.509 2.318 2.440 

c 0.945 0.953 0.767 0.773 3.910 4.040 

d 0.948 0.955 0.683 0.688 3.597 3.685 

e 1 1 0.765 0.766 9.551 9.844 

f 0.596 0.608 0.410 0.419 0.998 1.046 

To sum up, the proposed model replicates the distributions simulated with SolTrace, using 50 times 

less computation time. Furthermore, the spatial resolution can be greater than that of the MCRT 

simulation.  
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5. Flux map by a field of heliostats 

Once the model is validated for individual heliostats, the code has been extended to integrate the flux 

density distributions caused by the whole field. 

5.1 Concentration ratio and optical efficiency 

The concentration ratio of flux density defined in Eq. (9) does not take into account the optical losses, 

except for cosine effects and spillage, which are implicitly included. All other loss factors affecting the 

flux density are: mirror reflectivity, ρ, atmospheric attenuation, fat, and shading and blocking, fsb. Then, 

the concentration ratio in receiver node [i,j,p] due to a single heliostat accounting for all losses is: 

 losses
i , j ,p sb at i , j ,pC · f · f ·C=    (12) 

The heliostat optical efficiency is the product of the loss factors: intcos · · · ·h h sb atf f f=   . The 

reflectivity, ρ, is a property of the mirror and also depends on its cleanliness. Hereafter this factor has 

been neglected (ρ=1). The attenuation factor, fat, is primarily influenced by the heliostat distance to the 

target point, i.e. the slant range. One of the simplest correlation is [18]: 

 8 20.99321 0.000176· 1.97·10 ·at SLR SLRf −− +=  (13) 

The shading and blocking factor, fsb, is defined as the fraction of heliostat mirror that is neither 

shadowed nor blocked by neighbor heliostats. Due to its quick computation, parallelism between 

neighbor heliostat planes is assumed [19]. Shading potential is initially assigned to 14 neighbor 

heliostats, 3 of which may also block. However, those neighbors behind the plane of the heliostat are 

finally ignored, halving the number of neighbors projected. The shadowed/blocked mirror area is 

found in the intersection between the boundaries of the heliostat and those projected from its 

neighbors. To facilitate the computation, the coordinate system is transformed from global to heliostat, 

following Eq. (3). The calculation of shadowing and blocking factor has been successfully compared 

with the results published in [16]. 

To obtain the concentration ratio from a whole heliostat field, the concentration by each heliostat 

obtained from Eq. (12) is summed in every single node on the receiver mesh. 

 field losses
i , j ,p i , j ,p

heliostats
C C=    (14) 

The optical efficiency of a field consisting of Nh heliostats is equal to the averaged heliostat efficiency: 

field h h
heliostats

N=   . This is the figure of merit usually utilized in optimization studies [20]. 
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5.2 Flux map on the receiver 

From the field of 4550 heliostats introduced in the preceding section (Fig. 10), the overall distribution 

of flux density on the receiver has been computed by means of Eq. (14). The simulation takes around 1 

hour in all, while SolTrace would last around 50 hours (12.5 hours using 4 cores). All heliostats are 

aimed at the receiver equator (THT=120 m), which is the simplest aiming strategy. On a 3D view of 

the receiver, Fig. 14a represents the contours of concentration ratio of flux density for the equinox at 

noon time. Such flux map is also drawn in a 2D plot on the unfolded surface of the 16-panels 

cylindrical receiver (b). 

 

Fig. 14: Concentration ratio of flux density at equinox noon for single aiming. a) 3D view and b) unfolded 

2D view. 

Symmetry about the north direction was expected at noon. The mean flux concentration is equal to 

895, which represents the flux density of 895 suns at that instant of time; while the peak concentration 

is 1806. For any x-coordinate, the maximum concentration value is found slightly above the receiver 

equator. Although all heliostats are aimed at y=0, this is because adjacent panels are reached on 

average somewhat above. This effect is also revealed for individual heliostats in Fig. 13. The intercept 

factor is equal to 0.804 with equatorial aiming, which represents the upper limit for this heliostat field. 

These parameters and the overall optical efficiency are reported in Table 5. 

An animated video is included illustrating the heliostat field and the flux concentrations on the 

receiver throughout the equinox daytime. Shadowed and blocked mirror areas are there represented in 

black and cyan, respectively. Since the field is the densest possible many blocking and shading losses 

occur, particularly near sunrise and sunset. Even at noon, the overall shading and blocking factor is as 

low as 0.798. 

Video 1 [around here]: Animation of heliostat field and flux concentration on the receiver throughout 

Equinox daytime with single aiming. 
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6. Multi-aiming strategy 

Non-uniform flux distributions induce high thermal stress on receiver tubes, which is a critical factor 

in receiver design and operation [21,22]. In contrast to single aim, multi-aiming strategies can flatten 

the flux distribution on the receiver to reduce thermal stresses and enhance the receiver efficiency. A 

multi-aiming strategy entails adjusting each heliostat target position along the vertical direction on the 

surface of the cylindrical receiver. The position of the aim point can be estimated from the radius of 

the reflected beam, as suggested by Vant-Hull [23]. Then, the heliostat is aimed at the receiver in such 

a way that the beam circumference is tangent to either the upper or the lower receiver edge. 

The reflected sunshape and its associated errors have been modeled in Eq. (8) as circular Gaussian 

distributions convolved into the effective error σe. For a normal distribution, 68% of the reflected flux 

is within the beam subtended under σe, 95% under 2σe and 99.7% under 3σe. The beam radius ( kr  ) 

depends directly on the adopted error angle, k·σe, where k is defined as an aiming factor that typically 

ranges between 0 and 3. Since k·σe is small, the radius of the reflected beam at the image plane can be 

estimated as:  

 k er SLR·k· =    (15) 

The target point Tkσ is located from the upper or the lower edge, in alternate heliostat rows, at a 

distance equal to the projection of the beam radius ( p
kr 

). For cylindrical receivers, the beam radius 

projection into the receiver vertical satisfies: 

 p k e
k

t t

r SLR·k·r
cos cos





= =

 
  (16) 

where εt is the elevation angle of the t target vector, as previously stated. If the projection of the beam 

diameter is greater than the receiver height, then the heliostat is aimed at the receiver equator, Teq. Fig. 

15 illustrates the above described multi-targeting process, which comprises: (a) estimation of the beam 

radius and its projection based on preliminary equatorial aiming, and (b) positioning of the aim point. 

Since heliostats are aligned for a fixed target point, usually the equator, small –negligible– astigmatic 

aberrations are presumed for displaced aiming. 
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Fig. 15: Multi-aiming process: a) estimation of beam radius, and b) target positioning. 

Flux maps on the receiver have been again calculated at equinox noon using the multi-aiming strategy. 

For beam radii based on error angles 3σe, 2σe and σe, Fig. 16 represents the distributions of 

concentration ratio of flux density, where contour levels are kept the same as in Fig. 14. When k=3 

(Fig. 16a), the flux pattern is similar to that with equatorial aiming, as expected. However, the peak 

concentration ratio is reduced to 1770 by slightly broadening the hot spot, while the mean 

concentration ratio and the intercept factor remain almost equal to those with single aiming (Table 4). 
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Fig. 16: Concentration ratio of flux density at equinox noon for multi-aiming based on: a) 3σe, b) 2σe and 

c) σe. 

An aiming strategy based on 2σe substantially flattens the flux distribution along the equator belt (Fig. 

16b). At equinox noon, this aiming has the advantage of a more uniform distribution while the flux 

intercepted by the receiver is basically the same as for the above mentioned strategies. Now, the peak 

flux ratio falls to 1421. The latter and other parameters are reported in Table 4 for all the cases. 

Table 4: Optical efficiencies and concentration ratios. 

Aiming fint ηfield Cmax Cmean 

Single equatorial 0.804 0.466 1806 895.0 

Multiple 

3·σe 0.804 0.465 1770 894.6 

2·σe 0.796 0.460 1421 883.5 

1·σe 0.707 0.405 1007 778.7 

Lastly, a multi-aiming strategy based on k=1 generates a different flux pattern (Fig. 16c), where two 

hot strips are found above and below the equator. The softer spot at the bottom is mainly attributed to 

greater blocking losses as the height of the aim point diminishes. Compared to the other cases, spillage 

increases significantly (Table 4). 

  



27 
 

7. Conclusions 

We have presented a 4-step methodology to determine the flux density distribution on central receivers 

of flat panels. This procedure relies on the oblique projection onto the receiver from the flux 

distribution on the image plane. This is accomplished by a simple coordinate system transformation, 

implemented in a computer code. 

In this paper, the projection method has been applied on the basis of the analytic function at the image 

plane by Collado et al. [4]. The resulting model solves the distorted spot found when the incidence 

angle on the receiver increases. For any given rectangular focusing heliostat, the model compares 

successfully to both PSA measurements and SolTrace simulations. Compared to the latter, our code 

underestimates up to 2% the receiver interception. Considerable computation time is saved over 

MCRT, all of this with similar degree of accuracy and even higher resolution level for far heliostats. 

The developed tool generates the flux maps caused by an entire field of heliostats, considering shading 

and blocking in addition to the rest of optical losses. The distributions of flux density on the surface of 

central receivers are modified through a multi-aiming strategy based on the radius of each heliostat 

beam. For the staggered heliostat field in this paper, a rather uniform distribution is obtained when the 

beam radius is estimated from an error angle equal to 2σe. 

This optical performance tool can be applied to the investigation of the interaction between the 

heliostat field and the thermal receiver. Also optimization analyses can be conducted, taking 

advantage of its accuracy and computation speed.  
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