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a b s t r a c t

In this work, a new method for measuring void fraction distribution around endogenous bubbles in a 2D
fluidized bed is presented. The technique is based on illuminating a transparent wall 2 dimensional bed with

diffuse light from the rear and recording the distribution of light that penetrates the bed. The recording is

ication
made with a high speed video camera, which gives frames with grey level corresponding to the light
penetration and from which the voidage distribution around the bubbles can be determined. In this way,
voidage distribution in the region very close to the bubble contour (r/Rb≲1.2) is obtained, which was not
1. Introduction
possible in previous studies due to limitations in spatial resolution. A correlation is proposed for the voidage
at the contour of the bubble, with the voidage depending on the radial position and the polar angle ε(r, θ).
In addition, the effect of the voidage distribution on the throughflow crossing the bubbles was studied and an
increase of 20% was determined for the average bubble geometry of the more than 100 bubbles analysed.

s, bubbles appear when

Nguyen et al. [7] obtained similar experimental results in a “falling”
two dimensional bed with an artificial bubble made with a gauze cap
clamped between the front and the back walls of the bed. In this bed,
In most of gas fluidized beds appl

the superficial gas velocity exceeds the
 um velocity required to the artificial bubblewas fixed, while the solidsmoved downwardwith

a velocity similar to the typical bubble velocities in fluidized beds. The
minim
overcome the weight of the bed. Toomey and Johnstone [1] assumed

that all the air in excess of minimum fluidization velocity passes the
bed in the form of gas pockets or bubbles. This assumption is known as
the “two phase theory” and was adopted by Davidson [2] in his model.

Later, Jackson [3] extended Davidson's model including themomen
tum equation for the particle phase and assuming that the voidage can
vary around the bubble. Jackson included the voidage variation in the
function β(ε) which defines the drag force experienced by the particles.
Jackson's model has no analytical solution and an iterative method is
needed to solve the system of equations. Also Murray [4] developed a
model similar to Jackson's, although he confined the voidage variation in
a boundary layer around the bubble. Murray linearized the equations of
motion and obtained an analytical solution to the problem.

In order to verify thesemodels, Lockett and Harrison [5] developed
a capacitance probe able to measure the voidage around endogenous
bubbles in a 2D fluidized bed. They demonstrated that around bubbles
the voidage of the emulsion phase is higher than εmf and obtained
qualitative agreement with Jackson's model. Stewart [6] showed that
adopting an appropriated bubble velocity correlation, the experimen
tal results of Lockett and Harrison [5] agree with Jackson's model.
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flow of solids was controlled by a valve.
Some years after, Collins [8] derived a general expression for the

experimental results of Lockett and Harrison [5] and Nguyen et al. [7]
in the form

1 εðrÞ
1 εmf

= exp k2
Rb

r

� �3� �
ð1Þ

where Rb is the bubble radius (assumed circular bubbles), r is the
distance from the center of the bubble and k2=1/15 is a constant
adjusted experimentally. Eq. (1) was obtained assuming radial
symmetry for the bubble and for the voidage distribution ε=ε(r).

Using X rays in a 3D fluidized bed, Yates et al. [9] observed the
voidage distribution around a stream of injected bubbles. Buyevich
et al. [10] fitted the following exponential equation to the experi
mental results of Yates et al. [9]

εðrÞ εmf

1 εmf
= exp 1:5

r
Rb

1
� �� �

ð2Þ

assuming again a radially symmetrical distribution.
Fig. 1 shows that Eqs. (1) and (2) give considerable difference in

the voidage distribution around bubbles. The equation proposed by
Buyevich et al. [10] assumed that the voidage is equal to 1 at the
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Fig. 1. Comparison of the radial voidage distribution obtained from Eqs. (1) and (2)
assuming εmf=0.4.
bubble boundary while Collins [8] obtained a value of the voidage at
the bubble contour of εbc=0.44, much closer to the value far away
from the bubble. The observed differences can be attributed to the
different bed geometries (Eq. (1) was obtained for experiments
carried out in 2D fluidized beds, while Eq. (2) was obtained from 3D
experiments). Also the measurement techniques employed and the
uncertainty and accuracy of themeasurementsmay have influences in
the deviation between both equations.

In this work, a newmethod for measuring the voidage distribution
around endogenous bubbles in a 2D freely bubbling fluidized bed is
presented. The technique is based on illuminating the bed with a
diffuse light from the rear and then measure how much light
penetrates the bed. This means that light penetrates the bed when a
bubble passes and no light penetrateswhen there is no bubble present.
Around the bubble contour, there is a gradual change in light from full
light to no light. The light is recorded by a high speed video camera,
which then quantifies the incoming light as grey levels around the
bubbles. In this way, voidage levels can be obtained in the region near
the bubble contour (r/Rb≲1.2), i.e. where Lockett and Harrison [5] and
Nguyen et al. [7] could not obtain such values due to limitations in
spatial resolution. A new expression for voidage distribution is
proposed in the region r/Rb≲1.2.

In addition, following the work of Collins [8], the influence of the
voidage variation on the throughflowcrossing thebubbleswas analysed
numerically. For this study, themeanbubble geometry ofmore than100
bubbleswere analysed to obtain the voidage distribution. Thenumerical
analysis shows that the throughflow crossing the bubble is 20% higher
than the throughflow assuming a constant voidage ε=εmf in the
emulsion phase around the bubble.

The paper is organized as follows: first, the experimental set up
and the calibration method are described. Then, the main experimen
tal results, together with a correlation for the voidage distribution are
presented. In the fourth section the influence of the voidage variation
on the throughflow crossing the bubble are analysed numerically.
Finally, the fifth section discusses the main results of the work and the
sixth section summarizes the conclusions.
2. Experimental set-up and calibration

The experimental facility employed is similar to the one described
in more detail in [11]. A 2D fluidized bed (1.1 m wide, 0.6 m high and
0.005 m thick) was used with the front and the rear walls made of
glass. The rear wall of the bed was illuminated with a spotlight and
onion skin paper was placed behind the bed with the aim of scattering
the light as much as possible and avoiding flared highlights. A high
speed video camera of 1.3 Megapixels resolution (1024×1240 pixels)
was placed in the front of the bed. The time that the shutter was open
in each picture was only 1/5000 s in order to prevent blurring by the
motion of the bubbles. In all experiments the superficial velocity was
varied between 1≤U/Umf≤2. Since no particle recirculation system
exists in the experimental apparatus, higher fluidization velocities
were not employed in order to prevent the entrainment of particles
out of the bed. The height of the fixed bed during the experiments was
30 cm approximately achieving a resolution of ≈5 pixel/mm.

Two types of spherical glass particles were employed in the
experiments, both of them with a density of ρp = 2500 kg

m3. One group
of particles had a mean diameter of dp=350 µm and the other one
dp=600 µm. Two different particle sizes were tested in order to study
the influence of dp in the voidage distribution, although finally no
noticeable differences were observed between them.

Before each experiment, two series of 100 pictures were captured for
calibration. One with the empty bed and another one with the bed
slightly under minimum fluidization conditions in order to avoid the
presence of bubbles. The grey level obtained with the empty bed was
used as a spatial calibration of voidage ε=1 [12]. The greymap obtained
from the pictures at minimum fluidization conditions is εmf. In order to
determine thevalue of εmf, a preciselymeasuredmass of particles formed
the bed whose free surface height at minimum fluidization conditions,
Hmf, was obtained from digital image analysis. Thereby, a value of
εmf=0.4±0.002 was calculated for both particles sizes. The uncertainty
in εmf was calculated assuming and uncertainty in Hmf of 1mm.

The mean pictures of two calibration series are shown in Fig. 2
together with their histograms. The size of the picture captured from
the central region of the bed with the camera is approximately
0.20×0.25 m. Thus, only a small section of the bed is captured in order
to get a high spatial resolution. The white picture is similar to the one
obtained by Goldschmidt et al. [12] who used it to correct local light
intensities in their segregation study. A lighter region appears in the
center of the image. During the calibration, a proper selection of the
light intensity and the aperture of the diaphragmmust be taken. A too
high light intensity or too long times of exposure can result in the
appearance of flared highlights in the center of the picture, although
low intensity or short time of exposition could reduce the range of
variation of the grey levels too much. In contrast, Fig. 2 shows that
slightly under minimum fluidization conditions almost no light
traverses the bed and the histogram is narrow and near 0.

In literature there is a lackof studieswhich relatevoidage togrey levels
obtainedwith adigital camera. Twoprevious studies using2Dbeds canbe
found:Polettoetal. [13]obtaineddata fromabedfluidizedwithwater and
Boerefijn and Ghadiri [14] measured the particle concentration in a jet
using backscattering. In a differentwork, Yates et al. [9]measured voidage
profiles around bubbles in a 3D fluidized bed using X rays. The
experimental conditions and /or the measurement techniques employed
in these works are different to the ones used in this paper.

On the other hand, there is more information about the
relationship between light intensity and voidage in fluidized beds
using optical probes. Optical probes measure light intensity rather
than grey levels. Most of the works that can be found in the literature
obtain voidage (or particle concentration) data based on the
backscattering principle [15 18], i.e., measuring the light reflected
by the particles rather than the light transmitted. Rizzuti and Yue [19]
and Yue et al. [20] studied the light transmission through a 2D
fluidized bed photoreactor with different particles sizes and bed
thicknesses and observed an exponential decay of the intensity of the
light transmitted with the voidage in the bed, according to Eq. (3)

I = I0⋅expð a⋅ð1 εÞÞ ð3Þ

where I0 is the intensity of the emitted light, I is the intensity detected
by the probe and a is an experimental constant.

Eq. (3) has the same form as the Beer Lambert law for light
transmission through a group of suspended particles [21], although it
2



Fig. 2. (a) Average picture of the empty bed and (b) average picture with the bed at minimum fluidization condition, while (c) and (d) show the grey histograms respectively.
is important to clarify that the Beer Lambert law is not strictly
applicable in the present work, because the particle concentration is
high and most of the light is scattered (not absorbed). Therefore, the
constant a in Eq. (3) is not the absorptivity of the medium, but an
empirical constant based on the previous works available in the
literature using optical probes [15 20].

Nevertheless, grey levels rather than light intensities are obtained
with a digital camera. According to Russ [22], there is a logarithmic
relationship between the grey level (G.L.) and the light intensity:

G:L:∝log
I
I0

� �
ð4Þ

The combination of Eqs. (3) and (4) yields a linear relationship bet
ween grey levels and voidage. Therefore, the two calibration pictureswith
the empty bed (ε=1) and with the bed under minimum fluidization
conditions (ε=εmf=0.4) are used as spatial calibration of the framed
area.

The technique employed permits to measure properly voidage values
from ε=1 up to values close to the value at minimum fluidization
conditions (ε=0.46). In order obtain voidage values in the range
0.40≲ε≲0.46, a camera with a higher grey level resolution of the one
employed in this work (28=256 grey levels) should be used. Neverthe
less, the resolution of the camera used was found to give 26=64 grey
levels in the range of the measured voidages (0.46≲ε≲0.70).

3. Experimental results

For eachparticle size, six series of pictureswere taken.A total of 3272
pictures were captured at a rate of 250 fps in each series, resulting in a
total time of 13.1 s. Approximately 10 different bubbles fromeach series
were selected to analyse the voidage distribution. Between series, a time
lag of approximately 5 min was needed to download the pictures from
the camera to a PC. Although the camera was not recording during this
time lag, the gas flowwas not interrupted and the bed was in the same
bubbling conditions during the six series. Therefore, the total test time
for each particle size was approximately 30 min. Finally, a total of 116
different bubbles were analysed (65 bubbles from experiments with
particles of dp=350 µm and 51 from experiments with particles of
dp=600 µm).

Fig. 3 shows a typical picture captured with the high speed video
camera when the bed is freely bubbling. In the post measurement
analysis a bubble was selected and then a rectangular region
enclosing the bubble was cut out (Fig. 3). The bubble contour was
obtained applying a local threshold value, calculated according to
the method developed by Otsu [23], which gives consistent thre
shold values compared with other methods [24], and is widely used
due to its simplicity and stability. The method consists in separating
the pixels in two classes to determine the value that maximizes the
between clase variance.

The threshold value was calculated only in the neighborhood of
the bubble (Fig. 3). Note that the illumination cannot be perfectly
uniform (see Fig. 2) and the threshold value will be higher in the
central region of the picture and lower in peripheral part of the
picture. Thus, determination of a local threshold value is necessary in
order to detect properly the bubble contour. Fig. 4 shows the
histogram obtained for the picture shown in Fig. 3 and the threshold
value that defines the bubble contour, according to the Otsu method.
The histogram is wide enough and both phases (bubble and dense
phase) can be distinguished properly.
3



Fig. 3. (a) Typical picture captured with the high speed video-camera, (b) bubble selected and (c) bubble contour obtained using the threshold algorithm proposed by
Otsu [23].
Fig. 3 shows that at the nose of the bubble typical instabilities appear
and the particles rain down into the bubble in the form of “stalactites”.
These elongated groupof particles can reach the bottomof the bubble and
split the bubble in two [25,26]. Yet, the effectmay bemore common in 2D
beds than in 3D beds because of wall effects.

Bubbles of different sizes and shapes were analysed. Fig. 5 shows
the distribution of the bubble size, eccentricity and orientation.

The bubble size was calculated as the area equivalent diameter of
the bubble ( 4⋅Ab = π

p
where Ab is the projected area of the bubble).

The bubble eccentricity was obtained as the eccentricity of the ellipse
that has the same second moments as the bubble and the bubble
orientation was defined as the angle (in degrees) between the
horizontal axis and the major axis of such ellipse. The Probability
Density Functions (PDF) were obtained as the distributions p(x) that
maximize the Shannon's entropy ∫−p(x) ln (p(x))dx, restricted to a
series of constrains that the distribution p(x) has to satisfy, which are
the raw moments of the distribution 〈xi〉 [27,28]:

max∫−pðxÞ ln ðpðxÞÞdx ð5Þ
s:t:∫xipðxÞdx = 〈xi〉; i = 0;…;n ð6Þ

The obtained distribution is the least biased distribution that
satisfies the physics embodied in the constrains. The mathematical
procedure followed to obtain p(x) was similar to the one described in
detail in [27].

Fig. 5 shows no significant differences between the distributions
of the two particle sizes. Bubbles captured from the experiments
carried out with particles of dp=600 µm seem to be more elongated
(higher eccentricities), although the bubble size distribution is quite
similar in both cases.

With the threshold value of the bubble contour, the grey level was
transformed into voidage values, as is explained in Section 2. Fig. 6(a)
shows the voidage at the bubble contour, εbc, obtained for more than
100 different bubbles. The mean value is ε ̅bc=0.665. Fig. 6(b) gives
the PDF of the data of εbc for dp=350 µm (dashed line), dp=600 µm
(dotted line) and both together (solid line), obtained applying again
the maximum entropymethod [27,28]. The three group of data follow
a normal distributionwith the data distributed around themean value
4



Fig. 4. Grey histogram and threshold value obtained for the picture showed in Fig. 3 (b).

Fig. 5. Probability density functions of (a) bubble size, (b) bubble eccentricity and (c)
bubble orientation. Data obtained from experiments carried out with two different
particle sizes.
µwith a standard deviation σ. Particles of higher mean diameter seem
to obtain higher values of εbc.

Buyevich et al. [10] developed a theoretical model for the voidage
distribution along the vertical axis of a circular bubble. They
concluded that εbc is the same at the top and at the bottom of the
bubble. In addition, for a value of εmf=0.4, neglecting the influence of
the particle pressure and applying the continuity equations across the
bubble contour, they obtained values of εbc−=0.75 and εbc+ =0.56
at the inside and outside bubble surface, respectively. The mean value
obtained here and all individual data showed in Fig. 5 fall within these
limits (0.56<εbc<0.75).

Around the bubbles, different voidage contours, i.e. different grey
levels, were obtained. Fig. 7 shows the results obtained for the bubble
given in Fig. 3(b). The value of the voidage at the bubble contour is
εbc=0.68. A zoom of the nose of the bubble is showed in Fig. 7(b). In
the same figure the effect of the particles raining as one “stalactite”
can be seen: the voidage gradient is lower in the upper region of the
bubble, because the particles rain and spread in the interior of the
bubble. This effect results in a more difficult detection of the bubble
contour in the nose of the bubble. The voidage contours were properly
detected until a minimum value of

εmin≈0:46 ð7Þ

Lower values of voidage could not be determined because there is
not enough grey range between εmin and εmf and also, in some cases, a
closed contour of constant voidage does not appear for such low
values of ε.

In order to obtain a voidage distribution ε=ε(r,θ) around the
bubbles, 12 lines forming an angle of π/6 rad were traced from the
center of mass of each bubble. The intersection between the bubble
contour and these lines defines 12 points at the bubble contour. From
these starting points, 12 lines perpendicular to the contour of the
bubble were traced and the intersections of these lines with the
constant voidage contours defined the voidage gradient for each
direction. Fig. 8 shows graphically the methodology to obtain voidage
gradients for one bubble, although this procedure was repeated for all
the bubbles.

Collins [8] assumed radial symmetry to adjust Eq. (1) to the
experimental data of Lockett and Harrison [5] and Nguyen et al. [7].
The voidage data profiles of Lockett and Harrison [5] were obtained
for bubbles with an approximately circular shape. Although some
elongated bubbles were observed, only the data from the nose and
from the wake were measured for these bubbles. Moreover, the
geometry of the fixed artificial bubble employed by Nguyenet al. [7]
was also circular. Both series of experiments resulted in voidage
profiles in a region of r/Rb>1.2, where the voidage values are ε≲0.46.
Buyevich et al. [10] also assumed radial symmetry in Eq. (2). The
voidage distribution data were obtained from the horizontal section
across the equator of injected bubbles and they did not observe
differences along the upper half of the bubble. No data of the voidage
distribution in the lower half were obtained.

In contrast, most of the bubble observed in our experiments were
elongated bubbles (see Fig. 7) because of the interaction and
coalescence between bubbles in freely bubbling beds. Also, lower
voidage gradients in the nose of the bubble because of the effect of the
“stalactites” could be expected.

In this way, ε has been non dimensionalized in the same form as
Buyevich et al. [10] (Eq. (2)), replacing 1 by εbc due to εbc≠1 according to
our experimental measurements. The non dimensional voidage ε* varies
5



Fig. 6. (a) Voidage values at the dome contour for two different particle sizes (dp=350 µm
and dp=600 µm), where the solid line indicates the mean value ε bc=0.665 and (b) PDFs
of the data showed in graph (a).

Fig. 7. (a) Voidage constant lines around the bubble showed in Fig. 3 with εbc=0.681
and (b) detail of the nose of the bubble with one “stalactite”.

Fig. 8. Voidage variation in each direction. The points are the intersection of the constant
voidage curves with the perpendicular line to the bubble contour. The cross indicates the
center of mass of the bubble.
between 1, when ε=εmax=εbc and 0 when ε=εmin=εmf. The following
equation

ε* =
εðr; θÞ εmf

εbc εmf
= exp k1ðθÞ⋅

r
Rb

1
� �� �

ð8Þ

is proposed to fit the data of all bubbles in each direction, where k1(θ)
is a positive function of the direction. Higher values of k1(θ) implies
higher voidage gradients, as ε decreases faster, and viceversa. The
variables θ, Rb and r are defined in Fig. 8.

In agreement with the observation of Buyevich et al. [10], no
noticeable differences were observed for k1 in the upper half of the
bubble (0≤θ≤π), although higher values of k1 were obtained in the
lower half. The voidage distribution is symmetric with respect to the
vertical axis, although the value of k1 varies with θ, thus, there is not
radial symmetry. Table 1 shows the numerical values of k1 and their
standard deviation for different values of θ and Fig. 9 shows
graphically the variation of k1 with θ using a cubic spline interpolation
for the data between π/2≤θ≤0.

In the following section, the influence of the voidage distribution
(Eq. (8)) on the throughflow passing the bubble is studied numerically.
Higher values of voidage imply lower resistance to the gas flow.
Consequently, the throughflow is higher than the one calculated
assuming a constant voidage value ε=εmf in the emulsion phase [8,29].

4. Influence of voidage variation on the gas flow through a bubble

The voidage distribution around bubbles shows that, in the region in
the vicinity of the dome contour r/Rb≲1.2, neither the bubble geometry
nor the voidage distribution are radially symmetrical, although both of
them are symmetrical with respect to the vertical axis of the bubble.
Thus, in order to study the influence of the voidage variation on the gas
flow around a bubble, the mean geometry of the 116 bubbles observed
in the experiments is used, instead of an artificial circular or kidney
shape bubble.

The mean geometry is obtained from the points detected at the
bubble contour separated by π/6 rad. The mean position of each point
is shown in Fig. 10 as circles and Table 2 provides the numerical values
of these mean radial positions and their standard deviations for
different angular positions. All the points, except the one situated at
6



Table 1
Experimental values of k1 and their standard deviations for different values of θ.

θ k1 std (k1)

[0 π] 15.5 7.9
π/6, 5π/6 25.0 9.4
π/3, 2π/3 29.7 11.5
π/2 22.8 8.8

Data obtained from 116 different bubbles. Symmetry around the vertical axis is assumed.

Fig. 10. Mean bubble geometry obtained from 116 bubbles.
the bubble wake (θ=−π/2) fit to an ellipse of A=31.2×10−3m and
B=23.5×10−3m using a least square technique [30], where A and B
are the major and minor semiaxes, respectively. In contrast, the wake
region of the bubble is approximately flat. Thus, the mean bubble
geometry can be modeled as a truncated ellipse.

In order to study how consideration of the voidage variation
around bubbles influences the flow through the bubble, numerical
results obtained assuming a variable voidage outside of the bubble are
compared with those obtained with constant voidage ε= εmf.
Following the work of Collins [8] to obtain the throughflow, and
assuming that the voidage inside the bubble is εb≈1, it is possible to
infer that the throughflow crossing the bubble is independent of the
particle movement within the bubble. Thus, to determine the
throughflow crossing the bubble Ub, particle velocity is not necessary
for the calculations and the equations to solve are reduced to

∇⋅ðεuÞ = 0 ð9Þ

∇pf + βðεÞu = 0 ð10Þ

Introducing the concept of the permeability of the medium,
defined as Ke (ε)=µ·ε/β(ε), and taking into account the relationship
between the interstitial and superficial gas velocity U=uε, Eqs. (9)
and (10) can be combined resulting in

∇⋅
KeðεÞ
μ

∇pf

� �
= 0 ð11Þ

Then, the pressure field can be obtained solving Eq. (11) and the
gas velocity components from Eq. (10).
Fig. 9. Variation of k1 with the angle θ. The circles indicate the data showed in Table 1.
The data are symmetric respect to the vertical axis of the bubble.
In fact, Davidson and Harrison [31] followed the same procedure to
obtain the throughflow crossing the bubble, although they assumed
ε=εmf and Eq. (11) is reduced to the Laplace equation

∇2pf = 0 ð12Þ

which was solved analytically for circular and spherical bubbles.
Different functions can be found in the literature that relate the

permeability Ke with the porosity ε. In this work, the linear term of
Ergun equation [32], also known as the Carman Kozeny equation:

KeðεÞ =
ε3ðϕdpÞ2

150ð1 εÞ2 ð13Þ

was employed, where ϕ is the particle sphericity (ϕ=1 in our case).
Eq. (11) was solved using a finite element program, Comsol Multi

physics [33]. In order to solve numerically the problem of a bubble
moving in a infinite medium, the dimensions of the domain must be
significantly larger than the bubble radius, in order to avoid influences
of the boundary conditions, i.e., to approximate to a bubble in a infinite
suspension. Finally, a rectangular domain with dimensions of 200 A
high and 100 Bwidthwas chosen, whichwas found to be large enough
to eliminate influence of boundaries. It was found that an increase in
the calculation domain does not change the final result.

Constant pressure was used as boundary condition for the bottom
and pressure outlet for the top of the computational domain, because a
bubble ascending in an infinite medium at minimum fluidization con
ditions is assumed. The numerical value of the pressure at the bottom of
the bed is not relevant because the value of the flow is imposed by the
pressure drop in thebed,which is obtained by themediumpermeability
Ke (Eq. (13)). No penetration of gas was chosen for the lateral boundary
conditions. The same boundary conditions were assumed by Croxford
[34] in order to solve the Laplace equation (Eq. (12)) to obtain the
Table 2
Mean value and standard deviation of Rb at different angular positions for the 116
bubbles analysed.

θ Mean (Rb)×103 [m] Std (Rb)×103 [m]

0, π 37.3 6.8
π/6, 5π/6 34.0 8.2
π/3, 2π/3 36.9 10.6
π/2 42.8 11.1
π/6, 5π/6 41.2 8.4
π/3, 2π/3 48.4 10.0
π/2 35.8 10.4

The mean values are shown graphically in Fig. 10, where a truncated ellipse is adjusted
to them.
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Fig. 12. Representation of u, the right side of the bubble represents the result obtained
with a variable voidage and the left side the result assuming a constant voidage value of
ε=εmf=0.4 in the emulsion phase. (a) Velocity vectors and (b) Streamlines.
pressure field in a freely bubbling fluidized bed and in a bed with
injected bubbles. Croxford [34] compared satisfactorily the numerical
results with data from experimental measurements.

The mean bubble geometry shown in Fig. 10 was situated in the
middle of the domain and ε b̅c=0.665 was chosen as mean value of the
voidage at the bubble contour. The voidage distribution around the
bubble was calculated according to Eq. (8) using the values of k1(θ)
shown in Fig. 9, until the voidage reached a value of ε=εmin=0.46.
Eq. (8) is not valid for low values of ε. Instead, the distribution proposed
by Collins [8] (Eq. (1)), which is based on voidages ε≤0.46, obtained for
r ≳ 1.2, is used. Also these data were obtained from experiments in a 2D
bed, similar to the one used in this work. The constant k2=1/15 of
Eq. (1) was modified in order to get a continuous voidage distribution
and avoid an abrupt change in the voidage because of the different
correlations. Instead, a value of k2 in the range [1/7 1/8] (depending on
the value of θ) was used. Fig. 11 shows the variation of ε for θ=0. A
region very close to the bubble contour where the voidage decreases
rapidly down to εmin can be seen. Then the voidage decreases more
slowly according to the equation proposed by Collins [8].

The permeability in the emulsion phase outside of the bubble, kb,
obtained from Eq. (13) ranged between 10−9 and 10−10 for maximum
and minimum porosities respectively. The bubble interior was numer
icallymodeled as a region of very high permeabilityKb≫Ke. In thisway,
the bubble is a preferential path for the gas flow crossing the bed.

The numerical scheme was verified against the simplest case of an
isolated circular bubble, which was analysed previously by Almendros
Ibáñez et al. [35]. Having the Davidson's model as basis, Almendros
Ibáñez et al. [35] obtained a flow crossing the bubble of qb=4 · U0 · Rb,
agreeing with the analytical result obtained by Davidson [2].

Fig. 12a and b represent, respectively, the velocity vectors u and the
streamlines obtained for the mean bubble geometry viewed by a
stationary observer (Bubble velocity is assumed zero in the calculations
because the throughflow crossing the bubble is defined relative to the
bubble [36]). The left side of each figure represents the results obtained
assuming ε=εmf=0.4 everywhere outside the bubble and the right
side the data assuming a variable voidage. Streamlines are quite similar
and there is little difference between the two cases. Thus, the gas path is
not affected by variations in voidage. In contrast, the moduli of the
velocity vectors obtained for the constant voidage case are slightly
smaller than those of thevariable voidage case. An integration of the gas
flow along the minor semi axis of the bubble yields

qb
U0⋅B

j
ε=0:4

= 4:53 ð14Þ

for the constant voidage case and

qb
U0⋅B

j
ε=εðr;θÞ = 5:44 ð15Þ
Fig. 11. Voidage distribution around the mean bubble at θ=0. k1=15.5 and k2=1/7.
for the variable voidage. Thus, including the voidage distribution around
the bubble results in an increases of 20% in the flow crossing the bubble.
This result is logical, as higher porosities around the bubbles mean
higher permeabilities and therefore lower resistance to the gas flow.

Fig. 13 shows the gas flow profiles crossing the bubble through the
flat wake of the bottom of the bubble assuming variable (solid line)
and constant voidage (dashed line). In both cases, in the region close
to the corner (x/D≃1), the gas flow is much higher than in the middle
region of the bubble wake (x/D≃0). This indicates that the truncated
geometry of the bubble gives a significant increase in the flow in the
region corresponding to θ= π/3 and θ=−2π/3, where the ellipsoi
dal geometry of the bubble is transformed into a flat wake.
Fig. 13. Gas flow crossing the bubble through the flat region of the bubble's wake.
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5. Discussion

Benveniste et al. [37] and Qassim et al. [38] studied the influence of
the voidage variation around isolated circular bubbles, assuming a
voidage distribution given by Eq. (1). They obtained an analytical
solution for both, gas and particle stream functions, in the form of an
infinite summation. They concluded that the voidage variation does
not significantly affect the streamlines of any of the two flows (gas
and solids) and the use of the Davidson's model is justified. Collins [8]
following a similar reasoning developed also analytical expressions
for both stream functions (although retaining only the firsts terms of
the infinite sum) and justified the incompressible assumption in
Davidson's model. The conclusions obtained in these previous works
for circular bubbles are consistent with the results in the present work
for bubbles with a truncated ellipse geometry.

In addition, Collins [8] found that the increase in thegasflowcrossing
a circular bubble because of the change in the voidage is only 1.5%. This
modest increase contrasts with the higher value of 20% obtained in this
work. Nevertheless, Collins [8] assumed a voidage at the bubble contour
of εbc=0.439=1.10εmf, while a value of εbc=0.665=1.66εmf is
experimentally determined in the present work, which lies behind the
higher value of the throughflow crossing the bubble. Also Gera and
Gautam [29] applied Jackson's model [3] on elliptical bubbles and
observed an increase of the flow crossing the bubble with both bubble
aspect ratio and voidage at the nose of the bubble.

However, not only the increase in the voidage around bubbles
increases the flow crossing them. Also the geometry of the bubble
plays an important role for the gas flow. The gas flow obtained from
Eq. (14), i.e. 4.53, can be comparedwith the one obtained for a circular
bubble with a radius Rb=B [31], i.e.:

qb
U0⋅Rb

= 4 ð16Þ

or for non truncated ellipse of aspect ratio A/B [39], that is,

qb
U0⋅B

= 2⋅ 1 +
A
B

� �
= 4:66 ð17Þ

Thus, the gas crossing a bubble of the same cross sectional area is
higher for a truncated ellipse than for the circular one, as it is expected
because of the higher aspect ratio. In contrast, the throughflow is
lower for a truncated elliptical bubble than for a non truncated
geometry. In addition, the interface area (length, in a 2D bed) between
the bubble and the dense phase seems to influence the throughflow
too. A higher interface area implies a higher throughflow.

On the other hand, the voidage distribution obtained in this work
is not radially symmetric, as it was assumed by Collins [8] and
Buyevich et al. [10] in Eqs. (1) and (2) respectively. This fact is the
result of the instabilities appearing at the nose of the bubbles, which
gives the rain of particles in the form of the typical “stalactites” [26].
The value of k1(θ) in Eq. (8) is higher in the bottom region of the
bubble, where these instabilities do not appear. However, not only
does the increase in voidage around a bubble increase the flow
through them, but the geometry of the bubble also plays an important
role. The maximum value of k1(θ) is reached at θ= π/3, −2π/3
where the change in the bubble geometry occurs and also where the
gas flow crossing the bubble contour is maximum.

6. Conclusions

In conclusion, a new method for measuring voidage distribution
around bubbles in a 2D fluidized bed has been presented. This
method permits to obtain voidage contours in the region very close
to the bubble (r/Rb ≲ 1.2) where previous techniques employed by
other researchers [5,7] had not high enough spatial resolution. The
results obtained indicate the existence of a very narrow region
around the bubble where ε decreases rapidly according to Eq. (8)
with the values of k1(θ) shown in Table 1 and Fig. 9. In addition, a
mean value of ε ̅bc=0.665 for the voidage at the bubble contour was
obtained for a set of more than 100 bubbles obtained from
experiments carried out with two different particles sizes. Finally,
numerical modeling indicates that this higher voidage region
surrounding the bubble results in an increase of the throughflow
crossing the bubble by 20%with the representative bubble geometry
of the 116 bubbles analysed.
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Glossary

A: Mayor semiaxis of the ellipse [31.2 · 10 3m]
Ab: Projected area of the bubble [m2]
B: Minor semiaxis of the ellipse [23.5 · 10 3m]
D: Half of the length of the bubble's flat wake [16.0 · 10 3m]
dp: Particle diameter [m]
g: Gravity [m/s2]
G.L.: Grey level [ ]
I: Light intensity [cd]
I0: Intensity of the incident light [cd]
Ke: Permeability of the emulsion defined in Eq. (13) [m2]
Kb: Permeability of the bubble interior [m2]
k1: Constant defined in Eq. (8) [ ]
k2: Constant defined in Eq. (1) [ ]
pf: Fluid pressure [Pa]
qb: Gas flow crossing the bubble [m2/s]
Rb: Bubble radius [m]
r: Radial distance from the center of the bubble [m]
U: Superficial gas velocity [m/s]
U0: Superficial gas velocity far from the bubble [m/s]
Ub: Gas velocity crossing the bubble [m/s]
u: Gas velocity [m/s]
ũ: Relative gas velocity [m/s]
v: Particle velocity [m/s]
β: Function that defines the drag force [kg/(s m3)]
ε: Voidage [ ]
εb: Mean voidage at the bubble interior [ ]
εbc: Voidage at the bubble contour [ ]
εmf: Voidage at minimum fluidization conditions [ ]
θ: Angle formed with the horizontal [rad]
µ: Gas viscosity [Pa s]
ρp: Particle density kg

m3

h i
ϕ: Particle sphericity (=1) [ ]
() : Inside surface of the bubble
()+: Outside surface of the bubble
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