112 research outputs found

    Bio-Intervention of Naturally Occurring Silicate Minerals for Alternative Source of Potassium: Challenges and Opportunities

    Get PDF
    Soil needs simultaneous replenishment of various nutrients to maintain its inherent fertility status under extensive cropping systems. Replenishing soil nutrients with commercial fertilizer is costly. Among various fertilizers, deposits of potassium (K) ore suitable for the production of commercial K fertilizer (KCl) are distributed in few northern hemisphere countries (Canada, Russia, Belarus, and Germany) which control more than 70% of the world's potash market. Naturally occurring minerals, particularly silicate minerals, could be used as a source of K, but not as satisfactorily as commercial K fertilizers. In this context, bio-intervention (in combination with microorganisms and/or composting) of silicate minerals has been found quite promising to improve plant K availability and assimilation. This is an energy efficient and environmentally friendly approach. Here we present a critical review of existing literature on direct application of silicate minerals as a source of K for plant nutrition as well as soil fertility enhancement by underpinning the bio-intervention strategies and related K solubilization mechanisms. An advancement of knowledge in this field will not only contribute to a better understanding of the complex natural processes of soil K fertility, but also help to develop a new approach to utilize natural mineral resources for sustainable and environmental friendly agricultural practices

    Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: comparison of models

    Get PDF
    An evaluation of general models that describe gas production profiles is presented. The models are derived from first principles by considering a simple three-pool scheme and permit the extent of ruminal degradation to be calculated, as described in the companion paper. The models evaluated were the generalized Mitscherlich, simple Mitscherlich, generalized Michaelis–Menten, simple Michaelis–Menten, Gompertz, and logistic. Five sets of gas production data consisting of 216 curves, obtained using a wide range of feeds (including straw, hay, silage, grain and various byproducts), were analysed to study the performance of these gas production models. Application of the non-sigmoidal models (simple Mitscherlich and Michaelis–Menten) to the data resulted in convergence problems and these models were found to be inadequate in many cases. Based on results of a pairwise comparison between models (variance ratio test), ranking of residual mean squares, lack-of-fit test, and of analyses of residuals, the generalized Mitscherlich and the generalized Michaelis–Menten models seemed particularly suited because of their flexibility to encompass sigmoidal and non-sigmoidal shapes of gas production profiles, whether symmetrical or not

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source

    Get PDF
    In the field of X-ray microcomputed tomography (µCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratoryscale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser–plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray µCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration 1010 photons per pulse), small (diameter 15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the µCT scanner, an important confirmation of the suitability of the laserdriven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution µCT scans in minutes
    • …
    corecore