41 research outputs found

    Social Inequalities of Functioning and Perceived Health in Switzerland–A Representative Cross-Sectional Analysis

    Get PDF
    Many people worldwide live with a disability, i.e. limitations in functioning. The prevalence is expected to increase due to demographic change and the growing importance of non-communicable disease and injury. To date, many epidemiological studies have used simple dichotomous measures of disability, even though the WHO's International Classification of Functioning, Disability, and Health (ICF) provides a multi-dimensional framework of functioning. We aimed to examine associations of socio-economic status (SES) and social integration in 3 core domains of functioning (impairment, pain, limitations in activity and participation) and perceived health. We conducted a secondary analysis of representative cross-sectional data of the Swiss Health Survey 2007 including 10,336 female and 8,424 male Swiss residents aged 15 or more. Guided by a theoretical ICF-based model, 4 mixed effects Poisson regressions were fitted in order to explain functioning and perceived health by indicators of SES and social integration. Analyses were stratified by age groups (15–30, 31–54, ≥55 years). In all age groups, SES and social integration were significantly associated with functional and perceived health. Among the functional domains, impairment and pain were closely related, and both were associated with limitations in activity and participation. SES, social integration and functioning were related to perceived health. We found pronounced social inequalities in functioning and perceived health, supporting our theoretical model. Social factors play a significant role in the experience of health, even in a wealthy country such as Switzerland. These findings await confirmation in other, particularly lower resourced settings

    Immunological aspects in chronic lymphocytic leukemia (CLL) development

    Get PDF
    Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens—including apoptotic bodies—in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells

    OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

    Full text link
    The present OSS mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton's geysers. Voyager 2 revealed the dynamics of Neptune's atmosphere and found four rings and evidence of ring arcs above Neptune. Benefiting from a greatly improved instrumentation, it will result in a striking advance in the study of the farthest planet of the Solar System. Furthermore, OSS will provide a unique opportunity to visit a selected Kuiper Belt object subsequent to the passage of the Neptunian system. It will consolidate the hypothesis of the origin of Triton as a KBO captured by Neptune, and improve our knowledge on the formation of the Solar system. The probe will embark instruments allowing precise tracking of the probe during cruise. It allows to perform the best controlled experiment for testing, in deep space, the General Relativity, on which is based all the models of Solar system formation. OSS is proposed as an international cooperation between ESA and NASA, giving the capability for ESA to launch an M-class mission towards the farthest planet of the Solar system, and to a Kuiper Belt object. The proposed mission profile would allow to deliver a 500 kg class spacecraft. The design of the probe is mainly constrained by the deep space gravity test in order to minimise the perturbation of the accelerometer measurement.Comment: 43 pages, 10 figures, Accepted to Experimental Astronomy, Special Issue Cosmic Vision. Revision according to reviewers comment

    The global spectrum of plant form and function

    Full text link
    corecore