56 research outputs found

    FDM 3D printing of conductive polymer nanocomposites : A novel process for functional and smart textiles

    No full text
    The aim of this study is to get the benefitof functionalities of fused deposition modeling(FDM) 3D printed conductive polymer nanocomposites (CPC) for the developmentof functional and smart textiles. 3D printing holds strong potential for the formation of a new class of multifunctional nanocomposites. Therefore, developmentand characterization of 3D printable functional polymers and nanocomposites areneeded to apply 3D printing as a novel process for the depositionof functional materials on fabrics. This method will introduce more flexible, resource-efficient and cost-effectivetextile functionalization processes than conventional printing process like screen and inkjet printing. The goal is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. The contribution of this thesis is the creation and characterization of 3D printable CPC filaments, deposition of polymers and nanocomposites on fabrics, and investigation of the performance of the 3D printed CPC layers in terms of functionality. Firstly, the 3D printable CPC filaments were created including multi-walled carbon nanotubes (MWNT) and high-structured carbon black (Ketjenblack) (KB) incorporated into a biobased polymer, polylactic acid (PLA), using a melt mixing process. The morphological, electrical, thermal and mechanical properties of the 3D printer filaments and 3D printed layers were investigated. Secondly, the performance of the 3D printed CPC layers was analyzed under applied tension and compression force. The response for the corresponding resistance change versus applied load was characterized to investigate the performance of the printed layers in terms of functionality. Lastly, the polymers and nanocomposites were deposited on fabrics using 3D printing and the adhesion of the deposited layers onto the fabrics were investigated. The results showed that PLA-based nanocomposites including MWNT and KB are 3D printable. The changes in morphological, electrical, thermal, and mechanical properties of nanocomposites before and after 3D printing give us a great understandingofthe process optimization. Moreover, the results demonstrate PLA/MWNT and PLA/KB as a good piezoresistive feedstock for 3D printing with potential applications in wearable electronics, soft robotics, and prosthetics, where complex design, multi-directionality, and customizability are demanded. Finally, different variables of the 3Dprinting process showed a significanteffect on adhesion force of deposited polymers and nanocomposites onto fabrics which has been presented by the best-fittedmodel for the specific polymer and fabric.Le but de cette étude est d’exploiter les fonctionnalités des nano-Composites Polymères Conducteurs (CPC) imprimés en utilisant la technologie FDM (modélisation par dépôt de monofilament en fusion) pour le développement de textiles fonctionnels et intelligents. L’impression 3D présente un fort potentiel pour la création d’une nouvelle classe de nanocomposites multifonctionnels. Par conséquent, le développement et la caractérisation des polymères et nanocomposites fonctionnels et imprimables en 3D sont nécessaires afin d’utiliser l’impression 3D comme nouveau procédé de dépôt de ces matériaux sur textiles. Cette technique introduira des procédés de fonctionnalisation de textiles plus flexibles, économes en ressources et très rentables, par rapport aux procédés d'impression conventionnels tels que la sérigraphie et le jet d'encre. L’objectif est de développer une méthode de production intégrée et sur mesure pour des textiles intelligents et fonctionnels, afin d’éviter toute utilisation d'eau, d'énergie et de produits chimiques inutiles et de minimiser les déchets dans le but d’améliorer l'empreinte écologique et la productivité.  La contribution apportée par cette thèse consiste en la création et la caractérisation de filaments CPC imprimables en 3D, le dépôt de polymères et de nanocomposites sur des tissus et l’étude des performances en termes de fonctionnalité des couches de CPC imprimées en 3D. Dans un premier temps, nous avons créé des filaments de CPC imprimables en 3D, notamment des nanotubes de carbone à parois multiples (MWNT) et du noir de carbone à haute structure (Ketjenblack) (KB), incorporés dans de l'acide polylactique (PLA) à l'aide d'un procédé de mélange à l'état fondu. Les propriétés morphologiques, électriques, thermiques et mécaniques des filaments et des couches imprimées en 3D ont été étudiées. Deuxièmement, nous avons déposé les polymères et les nanocomposites sur des tissus à l’aide d’une impression 3D et étudié leur adhérence aux tissus. Enfin, les performances des couches de CPC imprimées en 3D ont été analysées sous tension et force de compression appliquées. La variation de la valeur de la résistance correspondant à la charge appliquée permet d’évaluer l'efficacité des couches imprimées en tant que capteur de pression / force.  Les résultats ont montré que les nanocomposites à base de PLA, y compris MWNT et KB, sont imprimables en 3D. Les modifications des propriétés morphologiques, électriques, thermiques et mécaniques des nanocomposites avant et après l’impression 3D nous permettent de mieux comprendre l’optimisation du procédé. De plus, différentes variables du procédé d’impression 3D ont un effet significatif sur la force d'adhérence des polymères et des nanocomposites déposés sur les tissus. Nous avons également développé des modèles statistiques fiables associés à ces résultats valables uniquement pour le polymère et le tissu de l’étude. Enfin, les résultats démontrent que les mélanges PLA/MWNT et PLA/KB sont de bonnes matières premières piézorésistives pour l’impression 3D. Elles peuvent être potentiellement utilisées dans l’électronique portable, la robotique molle et la fabrication de prothèses, où une conception complexe, multidirectionnelle et personnalisable est nécessaire. Syftet med denna studie är att kunna dra nytta av funktionaliteten hos fused deposition modeling (FDM) 3D-skrivna konduktiva polymera nanokompositer (CPC) för utveckling av funktionella och smarta textilier. 3D-skrivare har stor potential, som process, att kunna skapa en ny klass av multifunktionella nanokompositer. Därför behövs utveckling och karakterisering av funktionella polymerer och nanokompositer som går att använda med en 3D-skrivare för att kunna använda 3D-skrivare som en ny process för applicering av funktionella material på textil. Den här metoden introducerar textila funktionaliseringsprocesser som är mer flexibla, resurseffektiva och kostnadseffektiva jämfört med konventionella tryckmetoder som schablontryck och inkjet. Målet är att utveckla en integrerad eller skräddarsydd produktionsprocess för smarta och funktionella textilier som undviker onödig användning av vatten, energi och kemikalier samt som minimerar avfall, för förbättrat ekologiskt fotavtryck och produktivitet.  Den här uppsatsen bidrar med skapande och karakterisering av CPC-filament som går att 3D-skriva, applicering av polymerer och nanokompositer på textil och undersökning av de 3D-skrivna CPC-lagrens prestation vad gäller funktionalitet. Först skapades CPC-filament som var avsedda för 3D-skrivare genom att flerväggiga kolnanorör (MWNT) och high structured carbon black (Ketjenblack)(KB) inkorporerades i en biobaserad polymer, polymjölksyra (PLA), genom en smältblandningsprocess. De morfologiska, elektriska, termiska och mekaniska egenskaperna hos filamenten och de 3D-skrivna CPC-lagren undersöktes. Därefter analyserades de 3D-skrivna CPC-lagrens prestanda under applicerade spänning- respektive kompressionskrafter. För att utvärdera de utskrivna lagrens effektivitet som tryck-/kraftsensor undersöktes resistansförändringen mot applicerad belastning. Slutligen användes 3D-skrivare för att applicera polymererna och nanokompositerna på textil och lagrens vidhäftningsförmåga på textilen undersöktes.  Resultaten visade att de PLA-baserade nanokompositerna med MWNT och KB går att använda för 3D-skrivare. Förändringarna i de morfologiska, elektriska, termiska och mekaniska egenskaperna hos nanokompositerna till följd av 3D-skrivningen ger oss stor förståelse kring processoptimering. Dessutom visar resultaten att PLA/MWNT- och PLA/KB- kompositer är bra piezoresistiva råmaterial för 3D-skrivare med potentiella tillämpningar inom bärbar elektronik, mjuk robotik och proteser, där det krävs komplex design, anpassningsbarhet och möjlighet till skräddarsydda lösningar. Till sist visades att olika variabler i 3D-skrivarprocessen har signifikant påverkan på polymerernas och nanokompositernas vidhäfningsförmåga på textil, vilket presenteras med den bäst anpassade modellen för den specifika polymeren och textilen. 此篇博士论文致力于使用熔融沉积成型3D打印的导电性高分子纳米复合材料在功能和智能纺织品应用上的优越性的研究。3D打印在塑造新型多功能纳米复合材料方面极具前景。因此,开发和表征可用于3D打印的高分子材料和纳米高分子复合材料对使用3D打印在纺织品表面沉积功能材料的新工艺是十分必要的。相较于传统的印刷工艺, 譬如丝网印刷和喷墨打印,使用3D打印在纺织品表面沉积功能材料的新工艺将引入更灵活的,高资源能效的和经济有效的纺织品功能化工艺。此论文的目标是致力于整合的或者量身定做的智能化和功能化纺织品的生产流程。此生产流程避免使用不必要的水源,能源和化学品, 减少废料,因此生态足迹和生产效率得到改进。    此博士论文在创造和表征可3D打印的导电性高分子纳米复合材料,在纺织品上沉积高分子和高分子纳米复合材料,和在纺织品表面3D打印的导电性高分子纳米复合材料器件的功能性研究上具有开创性。首先,通过使用熔融混合法,多壁碳纳米管和高结构炭黑(ketjenblack)被掺入了可3D打印的聚乳酸中。聚乳酸是一种基于生物的高分子材料。其次,此论文对3D打印机的打印丝以及打印出的高分子层的形貌,电,热和力学性能进行了研究。其次,此论文对3D打印的导电性高分子纳米复合材料器件在拉力和压力下的表现进行了分析。器件对应于负载的电阻改变得到表征,可有效用于压力感应器。最后,我们使用3D打印在纺织品表面沉积了高分子和导电性高分子纳米复合材料,并研究了沉积材料与纺织品基体之间的表面附着力。    研究结果表明,掺入多壁碳纳米管和高结构炭黑的聚乳酸导电性高分子纳米复合材料可用于3D打印。我们可以通过其形貌,电,热以及力学性能在3D打印前和3D打印后的改变来理解和优化工艺。并且,研究结果表明,用于3D打印的聚乳酸/多壁碳纳米管和聚乳酸/高结构炭黑复合材料具有良好的压阻反馈,在可穿戴设备,柔软机器人和假体应用中具有前景,尤其是在设计复杂,多方向,和需要定制的应用上。最后,不同的3D打印参数对高分子和高分子纳米复合材料在纺织品上的附着力有重要影响。打印参数对附着力的影响可通过针对不用的高分子和纺织品基体使用最优化模型得到

    L'impression 3D de nanocomposites polymères conducteurs : un nouveau procédé pour la fonctionnalisation de surface de smart textiles

    No full text
    Le but de cette étude est d’exploiter les fonctionnalités des nano-Composites Polymères Conducteurs (CPC) imprimés en utilisant la technologie FDM (modélisation par dépôt de monofilament en fusion) pour le développement de textiles fonctionnels et intelligents. L’impression 3D présente un fort potentiel pour la création d’une nouvelle classe de nanocomposites multifonctionnels. Par conséquent, le développement et la caractérisation des polymères et nanocomposites fonctionnels et imprimables en 3D sont nécessaires afin d’utiliser l’impression 3D comme nouveau procédé de dépôt de ces matériaux sur textiles. Cette technique introduira des procédés de fonctionnalisation de textiles plus flexibles, économes en ressources et très rentables, par rapport aux procédés d'impression conventionnels tels que la sérigraphie et le jet d'encre. L’objectif est de développer une méthode de production intégrée et sur mesure pour des textiles intelligents et fonctionnels, afin d’éviter toute utilisation d'eau, d'énergie et de produits chimiques inutiles et de minimiser les déchets dans le but d’améliorer l'empreinte écologique et la productivité. La contribution apportée par cette thèse consiste en la création et la caractérisation de filaments CPC imprimables en 3D, le dépôt de polymères et de nanocomposites sur des tissus et l’étude des performances en termes de fonctionnalité des couches de CPC imprimées en 3D. Dans un premier temps, nous avons créé des filaments de CPC imprimables en 3D, notamment des nanotubes de carbone à parois multiples (MWNT) et du noir de carbone à haute structure (Ketjenblack) (KB), incorporés dans de l'acide polylactique (PLA) à l'aide d'un procédé de mélange à l'état fondu. Les propriétés morphologiques, électriques, thermiques et mécaniques des filaments et des couches imprimées en 3D ont été étudiées. Deuxièmement, nous avons déposé les polymères et les nanocomposites sur des tissus à l’aide d’une impression 3D et étudié leur adhérence aux tissus. Enfin, les performances des couches de CPC imprimées en 3D ont été analysées sous tension et force de compression appliquées. La variation de la valeur de la résistance correspondant à la charge appliquée permet d’évaluer l'efficacité des couches imprimées en tant que capteur de pression / force. Les résultats ont montré que les nanocomposites à base de PLA, y compris MWNT et KB, sont imprimables en 3D. Les modifications des propriétés morphologiques, électriques, thermiques et mécaniques des nanocomposites avant et après l’impression 3D nous permettent de mieux comprendre l’optimisation du procédé. De plus, différentes variables du procédé d’impression 3D ont un effet significatif sur la force d'adhérence des polymères et des nanocomposites déposés sur les tissus. Nous avons également développé des modèles statistiques fiables associés à ces résultats valables uniquement pour le polymère et le tissu de l’étude. Enfin, les résultats démontrent que les mélanges PLA/MWNT et PLA/KB sont de bonnes matières premières piézorésistives pour l’impression 3D. Elles peuvent être potentiellement utilisées dans l’électronique portable, la robotique molle et la fabrication de prothèses, où une conception complexe, multidirectionnelle et personnalisable est nécessaire.The aim of this study is to get the benefit of functionalities of fused deposition modeling (FDM) 3D printed conductive polymer nanocomposites (CPC) for the development of functional and smart textiles. 3D printing holds strong potential for the formation of a new class of multifunctional nanocomposites. Therefore, development and characterization of 3D printable functional polymers and nanocomposites are needed to apply 3D printing as a novel process for the deposition of functional materials on fabrics. This method will introduce more flexible, resource-efficient and cost-effective textile functionalization processes than conventional printing process like screen and inkjet printing. The goal is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. The contribution of this thesis is the creation and characterization of 3D printable CPC filaments, deposition of polymers and nanocomposites on fabrics, and investigation of the performance of the 3D printed CPC layers in terms of functionality. Firstly, the 3D printable CPC filaments were created including multi-walled carbon nanotubes (MWNT) and high-structured carbon black (Ketjenblack) (KB) incorporated into a biobased polymer, polylactic acid (PLA), using a melt mixing process. The morphological, electrical, thermal and mechanical properties of the 3D printer filaments and 3D printed layers were investigated. Secondly, the performance of the 3D printed CPC layers was analyzed under applied tension and compression force. The response for the corresponding resistance change versus applied load was characterized to investigate the performance of the printed layers in terms of functionality. Lastly, the polymers and nanocomposites were deposited on fabrics using 3D printing and the adhesion of the deposited layers onto the fabrics were investigated. The results showed that PLA-based nanocomposites including MWNT and KB are 3D printable. The changes in morphological, electrical, thermal, and mechanical properties of nanocomposites before and after 3D printing give us a great understanding of the process optimization. Moreover, the results demonstrate PLA/MWNT and PLA/KB as a good piezoresistive feedstock for 3D printing with potential applications in wearable electronics, soft robotics, and prosthetics, where complex design, multi-directionality, and customizability are demanded. Finally, different variables of the 3D printing process showed a significant effect on adhesion force of deposited polymers and nanocomposites onto fabrics which has been presented by the best-fitted model for the specific polymer and fabric

    FDM 3D printing of conductive polymer nanocomposites : A novel process for functional and smart textiles

    No full text
    The aim of this study is to get the benefitof functionalities of fused deposition modeling(FDM) 3D printed conductive polymer nanocomposites (CPC) for the developmentof functional and smart textiles. 3D printing holds strong potential for the formation of a new class of multifunctional nanocomposites. Therefore, developmentand characterization of 3D printable functional polymers and nanocomposites areneeded to apply 3D printing as a novel process for the depositionof functional materials on fabrics. This method will introduce more flexible, resource-efficient and cost-effectivetextile functionalization processes than conventional printing process like screen and inkjet printing. The goal is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. The contribution of this thesis is the creation and characterization of 3D printable CPC filaments, deposition of polymers and nanocomposites on fabrics, and investigation of the performance of the 3D printed CPC layers in terms of functionality. Firstly, the 3D printable CPC filaments were created including multi-walled carbon nanotubes (MWNT) and high-structured carbon black (Ketjenblack) (KB) incorporated into a biobased polymer, polylactic acid (PLA), using a melt mixing process. The morphological, electrical, thermal and mechanical properties of the 3D printer filaments and 3D printed layers were investigated. Secondly, the performance of the 3D printed CPC layers was analyzed under applied tension and compression force. The response for the corresponding resistance change versus applied load was characterized to investigate the performance of the printed layers in terms of functionality. Lastly, the polymers and nanocomposites were deposited on fabrics using 3D printing and the adhesion of the deposited layers onto the fabrics were investigated. The results showed that PLA-based nanocomposites including MWNT and KB are 3D printable. The changes in morphological, electrical, thermal, and mechanical properties of nanocomposites before and after 3D printing give us a great understandingofthe process optimization. Moreover, the results demonstrate PLA/MWNT and PLA/KB as a good piezoresistive feedstock for 3D printing with potential applications in wearable electronics, soft robotics, and prosthetics, where complex design, multi-directionality, and customizability are demanded. Finally, different variables of the 3Dprinting process showed a significanteffect on adhesion force of deposited polymers and nanocomposites onto fabrics which has been presented by the best-fittedmodel for the specific polymer and fabric.Le but de cette étude est d’exploiter les fonctionnalités des nano-Composites Polymères Conducteurs (CPC) imprimés en utilisant la technologie FDM (modélisation par dépôt de monofilament en fusion) pour le développement de textiles fonctionnels et intelligents. L’impression 3D présente un fort potentiel pour la création d’une nouvelle classe de nanocomposites multifonctionnels. Par conséquent, le développement et la caractérisation des polymères et nanocomposites fonctionnels et imprimables en 3D sont nécessaires afin d’utiliser l’impression 3D comme nouveau procédé de dépôt de ces matériaux sur textiles. Cette technique introduira des procédés de fonctionnalisation de textiles plus flexibles, économes en ressources et très rentables, par rapport aux procédés d'impression conventionnels tels que la sérigraphie et le jet d'encre. L’objectif est de développer une méthode de production intégrée et sur mesure pour des textiles intelligents et fonctionnels, afin d’éviter toute utilisation d'eau, d'énergie et de produits chimiques inutiles et de minimiser les déchets dans le but d’améliorer l'empreinte écologique et la productivité.  La contribution apportée par cette thèse consiste en la création et la caractérisation de filaments CPC imprimables en 3D, le dépôt de polymères et de nanocomposites sur des tissus et l’étude des performances en termes de fonctionnalité des couches de CPC imprimées en 3D. Dans un premier temps, nous avons créé des filaments de CPC imprimables en 3D, notamment des nanotubes de carbone à parois multiples (MWNT) et du noir de carbone à haute structure (Ketjenblack) (KB), incorporés dans de l'acide polylactique (PLA) à l'aide d'un procédé de mélange à l'état fondu. Les propriétés morphologiques, électriques, thermiques et mécaniques des filaments et des couches imprimées en 3D ont été étudiées. Deuxièmement, nous avons déposé les polymères et les nanocomposites sur des tissus à l’aide d’une impression 3D et étudié leur adhérence aux tissus. Enfin, les performances des couches de CPC imprimées en 3D ont été analysées sous tension et force de compression appliquées. La variation de la valeur de la résistance correspondant à la charge appliquée permet d’évaluer l'efficacité des couches imprimées en tant que capteur de pression / force.  Les résultats ont montré que les nanocomposites à base de PLA, y compris MWNT et KB, sont imprimables en 3D. Les modifications des propriétés morphologiques, électriques, thermiques et mécaniques des nanocomposites avant et après l’impression 3D nous permettent de mieux comprendre l’optimisation du procédé. De plus, différentes variables du procédé d’impression 3D ont un effet significatif sur la force d'adhérence des polymères et des nanocomposites déposés sur les tissus. Nous avons également développé des modèles statistiques fiables associés à ces résultats valables uniquement pour le polymère et le tissu de l’étude. Enfin, les résultats démontrent que les mélanges PLA/MWNT et PLA/KB sont de bonnes matières premières piézorésistives pour l’impression 3D. Elles peuvent être potentiellement utilisées dans l’électronique portable, la robotique molle et la fabrication de prothèses, où une conception complexe, multidirectionnelle et personnalisable est nécessaire. Syftet med denna studie är att kunna dra nytta av funktionaliteten hos fused deposition modeling (FDM) 3D-skrivna konduktiva polymera nanokompositer (CPC) för utveckling av funktionella och smarta textilier. 3D-skrivare har stor potential, som process, att kunna skapa en ny klass av multifunktionella nanokompositer. Därför behövs utveckling och karakterisering av funktionella polymerer och nanokompositer som går att använda med en 3D-skrivare för att kunna använda 3D-skrivare som en ny process för applicering av funktionella material på textil. Den här metoden introducerar textila funktionaliseringsprocesser som är mer flexibla, resurseffektiva och kostnadseffektiva jämfört med konventionella tryckmetoder som schablontryck och inkjet. Målet är att utveckla en integrerad eller skräddarsydd produktionsprocess för smarta och funktionella textilier som undviker onödig användning av vatten, energi och kemikalier samt som minimerar avfall, för förbättrat ekologiskt fotavtryck och produktivitet.  Den här uppsatsen bidrar med skapande och karakterisering av CPC-filament som går att 3D-skriva, applicering av polymerer och nanokompositer på textil och undersökning av de 3D-skrivna CPC-lagrens prestation vad gäller funktionalitet. Först skapades CPC-filament som var avsedda för 3D-skrivare genom att flerväggiga kolnanorör (MWNT) och high structured carbon black (Ketjenblack)(KB) inkorporerades i en biobaserad polymer, polymjölksyra (PLA), genom en smältblandningsprocess. De morfologiska, elektriska, termiska och mekaniska egenskaperna hos filamenten och de 3D-skrivna CPC-lagren undersöktes. Därefter analyserades de 3D-skrivna CPC-lagrens prestanda under applicerade spänning- respektive kompressionskrafter. För att utvärdera de utskrivna lagrens effektivitet som tryck-/kraftsensor undersöktes resistansförändringen mot applicerad belastning. Slutligen användes 3D-skrivare för att applicera polymererna och nanokompositerna på textil och lagrens vidhäftningsförmåga på textilen undersöktes.  Resultaten visade att de PLA-baserade nanokompositerna med MWNT och KB går att använda för 3D-skrivare. Förändringarna i de morfologiska, elektriska, termiska och mekaniska egenskaperna hos nanokompositerna till följd av 3D-skrivningen ger oss stor förståelse kring processoptimering. Dessutom visar resultaten att PLA/MWNT- och PLA/KB- kompositer är bra piezoresistiva råmaterial för 3D-skrivare med potentiella tillämpningar inom bärbar elektronik, mjuk robotik och proteser, där det krävs komplex design, anpassningsbarhet och möjlighet till skräddarsydda lösningar. Till sist visades att olika variabler i 3D-skrivarprocessen har signifikant påverkan på polymerernas och nanokompositernas vidhäfningsförmåga på textil, vilket presenteras med den bäst anpassade modellen för den specifika polymeren och textilen. 此篇博士论文致力于使用熔融沉积成型3D打印的导电性高分子纳米复合材料在功能和智能纺织品应用上的优越性的研究。3D打印在塑造新型多功能纳米复合材料方面极具前景。因此,开发和表征可用于3D打印的高分子材料和纳米高分子复合材料对使用3D打印在纺织品表面沉积功能材料的新工艺是十分必要的。相较于传统的印刷工艺, 譬如丝网印刷和喷墨打印,使用3D打印在纺织品表面沉积功能材料的新工艺将引入更灵活的,高资源能效的和经济有效的纺织品功能化工艺。此论文的目标是致力于整合的或者量身定做的智能化和功能化纺织品的生产流程。此生产流程避免使用不必要的水源,能源和化学品, 减少废料,因此生态足迹和生产效率得到改进。    此博士论文在创造和表征可3D打印的导电性高分子纳米复合材料,在纺织品上沉积高分子和高分子纳米复合材料,和在纺织品表面3D打印的导电性高分子纳米复合材料器件的功能性研究上具有开创性。首先,通过使用熔融混合法,多壁碳纳米管和高结构炭黑(ketjenblack)被掺入了可3D打印的聚乳酸中。聚乳酸是一种基于生物的高分子材料。其次,此论文对3D打印机的打印丝以及打印出的高分子层的形貌,电,热和力学性能进行了研究。其次,此论文对3D打印的导电性高分子纳米复合材料器件在拉力和压力下的表现进行了分析。器件对应于负载的电阻改变得到表征,可有效用于压力感应器。最后,我们使用3D打印在纺织品表面沉积了高分子和导电性高分子纳米复合材料,并研究了沉积材料与纺织品基体之间的表面附着力。    研究结果表明,掺入多壁碳纳米管和高结构炭黑的聚乳酸导电性高分子纳米复合材料可用于3D打印。我们可以通过其形貌,电,热以及力学性能在3D打印前和3D打印后的改变来理解和优化工艺。并且,研究结果表明,用于3D打印的聚乳酸/多壁碳纳米管和聚乳酸/高结构炭黑复合材料具有良好的压阻反馈,在可穿戴设备,柔软机器人和假体应用中具有前景,尤其是在设计复杂,多方向,和需要定制的应用上。最后,不同的3D打印参数对高分子和高分子纳米复合材料在纺织品上的附着力有重要影响。打印参数对附着力的影响可通过针对不用的高分子和纺织品基体使用最优化模型得到

    Dialkylaminoalkyl-isothiochroman-S,S-dioxide

    No full text

    Legal status of the embryo in vitro

    No full text
    Creation of the embryo in vitro is one of the major issues that emerged in recent decades in medicine and it has followed many legal and ethical issues. The embryos in vitro are used as a way for fertility couples that are infertile .But Surplus embryos are created in every artificial fertility cycle that we can keep them frozen and use them in the research, treatment, buy and sell .While the legal nature of the embryo in vitro is not known and there is not a law about production, storage and use of them So It is possible they are used as a tool for business and dealing. Until the Legal status of in vitro embryo is not clear initially, we can not take any decision about it So in this article we will be explaining the Legal status of the fetus

    Piezoresistive Properties of 3D-Printed Polylactic Acid (PLA) Nanocomposites

    No full text
    An increasing interest is focused on the application of 3D printing for sensor manufacturing. Using 3D printing technology offers a new approach to the fabrication of sensors that are both geometrically and functionally complex. This work presents the analysis of the 3D-printed thermoplastic nanocomposites compress under the applied force. The response for the corresponding resistance changes versus applied load is obtained to evaluate the effectiveness of the printed layer as a pressure/force sensor. Multi-walled carbon nanotubes (MWNT) and high-structured carbon black (Ketjenblack) (KB) in the polylactic acid (PLA) matrix were extruded to develop 3D-printable filaments. The electrical and piezoresistive behaviors of the created 3D-printed layers were investigated. The percolation threshold of MWNT and KB 3D-printed layers are 1 wt.% and 4 wt.%, respectively. The PLA/1 wt.% MWNT 3D-printed layers with 1 mm thickness exhibit a negative pressure coefficient (NPC) characterized by a decrease of about one decade in resistance with increasing compressive loadings up to 18 N with a maximum strain up to about 16%. In the cyclic mode with a 1 N/min force rate, the PLA/1 wt.% MWNT 3D-printed layers showed good performance with the piezoresistive coefficient or gauge factor (G) of 7.6 obtained with the amplitude of the piezoresistive response (Ar) of about -0.8. KB composites could not show stable piezoresistive responses in a cyclic mode. However, under high force rate compression, the PLA/4 wt.% KB 3D-printed layers led to responses of large sensitivity (Ar = −0.90) and were exempt from noise with a high value of G = 47.6 in the first cycle, which is a highly efficient piezoresistive behavior.(This article belongs to the Special Issue Polymers and Their Application in 3D Printing)</p

    Wicking Phenomenon in Nanofiber-Coated Filament Yarns

    No full text
    ABSTRACT Wicking phenomenon has been investigated in filaments and spun yarns in different studies. In comparison with conventional structures, nanofibrous structures have unique characteristics such as higher surface-to-volume ratios, smaller pores, and higher porosity. For many nanofiber applications, a good understanding of the liquid absorption and wettability of nanofibrous is crucial. In this article, a modified electrospinning process for yarn coating with nanofiber is presented. In this method, fiber direction was controlled by manipulating the conventional system of electrospining and embedded nanofibers on yarn surface. Nylon66 filament was coated with nylon 66 nanofiber. The coating morphology and capillary phenomenon were examined in different concentrations of polymer solution. The kinetics of capillary flow of colored liquid in coated yarns with nanofiber follows the Lucas-Washburn equation. Results show that coating with nanofibers increases equilibrium wicking height. In a nanofiber coating process, with a constant feeding rate, increasing the solution concentration increases the capillary rise rate
    corecore