26 research outputs found

    Impact of intermittent gravity wave activity on the middle atmospheric circulation during boreal winter

    Get PDF
    Simulations of the circulation in the middle atmosphere during northern winter performed with a nonlinear, mechanistic, global circulation model show that the upper mesospheric jet is greatly overestimated and also the position with respect to latitude and height does not correspond to observations. Apart from that also the winter wind reversal in the mesopause region, evoked by breaking gravity waves (GWs), is located too low around 80km, but is observed to be usually around 100 km. These discrepancies are planned to be eliminated by modifying the distribution of GW amplitudes driving the GW parameterization. This distribution is currently based on potential GW energy data derived from GPS radio occultation measurements and has to be replaced by a distribution based on momentum flux estimates applying midfrequency approximation. The results show a weaker mesospheric jet more realistically tilted towards lower latitudes with height. Also the meridional circulation extending from the summer to the winter pole decelerates and less GWs are propagating into the mesosphere. By additionally varying the GW amplitudes in magnitude and time, the wind reversal is shifted upwards and the mesospheric jet is slowed down.Simulationen der Zirkulation der mittleren AtmosphĂ€re wĂ€hrend des nordhemisphĂ€rischen Winters unter Verwendung eines nicht-linearen mechanistischen globalen Zirkulationsmodells ergaben beim Vergleich mit Messungen, dass der simulierte, mesosphĂ€rische Jet stark ĂŒberschĂ€tzt wird und dessen Position von den Beobachtungen abweicht. Die in der Mesopausenregion einsetzende Windumkehr, hervorgerufen durch brechende Schwerewellen, befindet sich in etwa 80 km anstatt in 100 km. Diese Diskrepanzen sollen eliminiert werden. HierfĂŒr wird die Verteilung der Schwerewellenamplituden, die die Schwerewellenparametrisierung innerhalb des Modells antreibt, am oberen Rand der TroposphĂ€re modifiziert. Diese basiert derzeit auf global beobachteten, zonal gemittelten Daten der potentiellen Energie von Schwerewellen abgeleitet aus GPS Radiookkultationsmessungen und soll durch eine auf ImpulsflĂŒssen basierende Verteilung ersetzt werden. Das Modellexperiment zeigt, dass der mesosphĂ€rische Jet mit der Höhe in Richtung niedriger Breiten geneigt ist und abgebremst wird. Zudem schwĂ€cht die Meridionalzirkulation vom Sommer- zum Winterpol leicht ab und weniger Schwerewellen dringen bis in die MesosphĂ€re vor. ZusĂ€tzlich wird durch zeitliche und unterschiedlich starke Variation der Schwerewellenamplitude die Windumkehr verlagert und der mesosphĂ€rische Jet abgebremst

    Long-period oscillations derived from mesosphere/lower thermosphere meteor radar temperature measurements

    Get PDF
    Using measurements, derived from a meteor radar in Collm (51.3°N, 13°E), the mesopause region is analyzed with respect to the temperature distribution at an altitude of 90 km over a period of 10 years. The analyzed period lasts from 2005 till 2013. Based on these measurements, the typical temperature seasonal cycle of the mesopause region can be observed. The temperature reaches its minimum of about 130 K in summer and its maximum of about 220 K in winter. At this altitude, also strong day-today- fluctuations of up to 35 K exist, which are probably partly induced by planetary waves. Shorter-period oscillations with a period between 2 and 6 days have maximum amplitudes during summer, while longer-period oscillations with a period between 7 and 20 days maximize during winter. During the measurement period the amplitudes of oscillations with periods between 4 and 6 days, which may be attributed to the quasi-5-day-wave, increase with time.Auf der Grundlage von Messungen eines Meteorradars in Collm (51.3°N, 13°E), die in einer Höhe von 90 km erfolgten, was in etwa der Mesopause entspricht, wird die Temperatur hinsichtlich ihres Jahresganges und insbesondere ihrer Variationen in einem Messzeitraum von 10 Jahren analysiert. Der analysierte Zeitraum erstreckt sich von 2005 bis 2013. Anhand der Daten kann man den typischen Jahresgang der Temperatur in der Mesopausenregion erkennen. Die Temperatur erreicht im Sommer das Minimum bei etwa 130 K und im Winter das Maximum bei etwa 220 K. Zudem treten starke Tag-zu-Tag-Fluktuationen auf, die im Maximum 35 K betragen. Diese werden vermutlich durch planetare WellenaktivitĂ€t der AtmosphĂ€re hervorgerufen. Hierbei spielen im Sommer die kurzwelligen und im Winter die langwelligen Oszillationen, letztere mit Perioden grĂ¶ĂŸer 7 Tage, die wesentliche Rolle. Ferner sind innerhalb des Messzeitraums zunehmende Amplituden von Oszillationen mit Perioden zwischen 4 und 6 Tagen (quasi 5-Tage-Welle) zu erkennen

    Variability of Gravity Wave Effects on the Zonal Mean Circulation and Migrating Terdiurnal Tide as Studied With the Middle and Upper Atmosphere Model (MUAM2019) Using a Nonlinear Gravity Wave Scheme

    Get PDF
    Implementing a nonlinear gravity wave (GW) parameterization into a mechanistic middle and upper atmosphere model, which extends to the lower thermosphere (160 km), we study the response of the atmosphere in terms of the circulation patterns, temperature distribution, and migrating terdiurnal solar tide activity to the upward propagating small scale internal GWs originating in the lower atmosphere. We perform three test simulations for the Northern Hemisphere winter conditions in order to assess the effects of variations in the initial GW spectrum on the climatology and tidal patterns of the mesosphere and lower thermosphere. We find that the overall strength of the source level momentum flux has a relatively small impact on the zonal mean climatology. The tails of the GW source level spectrum, however, are crucial for the lower thermosphere climatology. With respect to the terdiurnal tide, we find a strong dependence of tidal amplitude on the induced GW drag, generally being larger when GW drag is increased

    Variability of Gravity Wave Effects on the Zonal Mean Circulation and Migrating Terdiurnal Tide as Studied With the Middle and Upper Atmosphere Model (MUAM2019) Using a Nonlinear Gravity Wave Scheme

    Get PDF
    Implementing a nonlinear gravity wave (GW) parameterization into a mechanistic middle and upper atmosphere model, which extends to the lower thermosphere (160 km), we study the response of the atmosphere in terms of the circulation patterns, temperature distribution, and migrating terdiurnal solar tide activity to the upward propagating smallscale internal GWs originating in the lower atmosphere. We perform three test simulations for the Northern Hemisphere winter conditions in order to assess the effects of variations in the initial GWspectrum on the climatology and tidal patterns of the mesosphere and lower thermosphere. We find that the overall strength of the source level momentum flux has a relatively small impact on the zonal mean climatology. The tails of the GW source level spectrum, however, are crucial for the lower thermosphere climatology. With respect to the terdiurnal tide, we find a strong dependence of tidal amplitude on the induced GW drag, generally being larger when GW drag is increased

    Mutual Interference of Local Gravity Wave Forcings in the Stratosphere

    Get PDF
    Gravity wave (GW) breaking and associated GW drag is not uniformly distributed among latitudes and longitudes. In particular, regions of enhanced GW breaking, so-called GW hotspots, have been identified, major Northern Hemisphere examples being located above the Rocky Mountains, the Himalayas and the East Asian region. These hotspots influence the middle atmosphere circulation both individually and in combination. Their interference is here examined by performing simulations including (i) the respective single GW hotspots, (ii) two GW hotspots, and (iii) all three GW hotspots with a simplified global circulation model. The combined GW hotspots lead to a modification of the polar vortex in connection with a zonal mean flow decrease and an increase of the temperature at higher latitudes. The different combinations of GW hotspots mainly prevent the stationary planetary wave (SPW) 1 from propagating upward at midlatitudes leading to a decrease in energy and momentum transfer in the middle atmosphere caused by breaking SPW 1, and in turn to an acceleration of the zonal mean flow at lower latitudes. In contrast, the GW hotspot above the Rocky Mountains alone causes an increase in SPW 1 amplitude and Eliassen–Palm flux (EP flux), inducing enhanced negative EP divergence, decelerating the zonal mean flow at higher latitudes. Consequently, none of the combinations of different GW hotspots is comparable to the impact of the Rocky Mountains GW hotspot alone. The reason is that the GW hotspots mostly interfere nonlinearly. Depending on the longitudinal distance between two GW hotspots, the interference between the combined Rocky Mountains and East Asian GW hotspots is more additive than the interference between the combined Rocky Mountains and Himalaya GW hotspots. While the Rocky Mountains and the East Asian GW hotspots are longitudinally displaced by 105°, the Rocky Mountains are shifted by 170° to the Himalayas. Moreover, while the East Asian and the Himalayas are located side by side, the interference between these GW hotspots is the most nonlinear because they are latitudinally displaced by 20°. In general, the SPW activity, e.g., represented in SPW amplitudes, EP flux or Plumb flux, is strongly reduced, when the GW hotspots are interacting with each other. Thus, the interfering GW hotspots mostly have a destructive effect on SPW propagation and generation

    Impact of intermittent gravity wave activity on the middle atmospheric circulation during boreal winter

    No full text
    Simulations of the circulation in the middle atmosphere during northern winter performed with a nonlinear, mechanistic, global circulation model show that the upper mesospheric jet is greatly overestimated and also the position with respect to latitude and height does not correspond to observations. Apart from that also the winter wind reversal in the mesopause region, evoked by breaking gravity waves (GWs), is located too low around 80km, but is observed to be usually around 100 km. These discrepancies are planned to be eliminated by modifying the distribution of GW amplitudes driving the GW parameterization. This distribution is currently based on potential GW energy data derived from GPS radio occultation measurements and has to be replaced by a distribution based on momentum flux estimates applying midfrequency approximation. The results show a weaker mesospheric jet more realistically tilted towards lower latitudes with height. Also the meridional circulation extending from the summer to the winter pole decelerates and less GWs are propagating into the mesosphere. By additionally varying the GW amplitudes in magnitude and time, the wind reversal is shifted upwards and the mesospheric jet is slowed down.Simulationen der Zirkulation der mittleren AtmosphĂ€re wĂ€hrend des nordhemisphĂ€rischen Winters unter Verwendung eines nicht-linearen mechanistischen globalen Zirkulationsmodells ergaben beim Vergleich mit Messungen, dass der simulierte, mesosphĂ€rische Jet stark ĂŒberschĂ€tzt wird und dessen Position von den Beobachtungen abweicht. Die in der Mesopausenregion einsetzende Windumkehr, hervorgerufen durch brechende Schwerewellen, befindet sich in etwa 80 km anstatt in 100 km. Diese Diskrepanzen sollen eliminiert werden. HierfĂŒr wird die Verteilung der Schwerewellenamplituden, die die Schwerewellenparametrisierung innerhalb des Modells antreibt, am oberen Rand der TroposphĂ€re modifiziert. Diese basiert derzeit auf global beobachteten, zonal gemittelten Daten der potentiellen Energie von Schwerewellen abgeleitet aus GPS Radiookkultationsmessungen und soll durch eine auf ImpulsflĂŒssen basierende Verteilung ersetzt werden. Das Modellexperiment zeigt, dass der mesosphĂ€rische Jet mit der Höhe in Richtung niedriger Breiten geneigt ist und abgebremst wird. Zudem schwĂ€cht die Meridionalzirkulation vom Sommer- zum Winterpol leicht ab und weniger Schwerewellen dringen bis in die MesosphĂ€re vor. ZusĂ€tzlich wird durch zeitliche und unterschiedlich starke Variation der Schwerewellenamplitude die Windumkehr verlagert und der mesosphĂ€rische Jet abgebremst

    Long-period oscillations derived from mesosphere/lower thermosphere meteor radar temperature measurements

    Get PDF
    Using measurements, derived from a meteor radar in Collm (51.3°N, 13°E), the mesopause region is analyzed with respect to the temperature distribution at an altitude of 90 km over a period of 10 years. The analyzed period lasts from 2005 till 2013. Based on these measurements, the typical temperature seasonal cycle of the mesopause region can be observed. The temperature reaches its minimum of about 130 K in summer and its maximum of about 220 K in winter. At this altitude, also strong day-today- fluctuations of up to 35 K exist, which are probably partly induced by planetary waves. Shorter-period oscillations with a period between 2 and 6 days have maximum amplitudes during summer, while longer-period oscillations with a period between 7 and 20 days maximize during winter. During the measurement period the amplitudes of oscillations with periods between 4 and 6 days, which may be attributed to the quasi-5-day-wave, increase with time.Auf der Grundlage von Messungen eines Meteorradars in Collm (51.3°N, 13°E), die in einer Höhe von 90 km erfolgten, was in etwa der Mesopause entspricht, wird die Temperatur hinsichtlich ihres Jahresganges und insbesondere ihrer Variationen in einem Messzeitraum von 10 Jahren analysiert. Der analysierte Zeitraum erstreckt sich von 2005 bis 2013. Anhand der Daten kann man den typischen Jahresgang der Temperatur in der Mesopausenregion erkennen. Die Temperatur erreicht im Sommer das Minimum bei etwa 130 K und im Winter das Maximum bei etwa 220 K. Zudem treten starke Tag-zu-Tag-Fluktuationen auf, die im Maximum 35 K betragen. Diese werden vermutlich durch planetare WellenaktivitĂ€t der AtmosphĂ€re hervorgerufen. Hierbei spielen im Sommer die kurzwelligen und im Winter die langwelligen Oszillationen, letztere mit Perioden grĂ¶ĂŸer 7 Tage, die wesentliche Rolle. Ferner sind innerhalb des Messzeitraums zunehmende Amplituden von Oszillationen mit Perioden zwischen 4 und 6 Tagen (quasi 5-Tage-Welle) zu erkennen

    Impact of intermittent gravity wave activity on the middle atmospheric circulation during boreal winter

    Get PDF
    Simulations of the circulation in the middle atmosphere during northern winter performed with a nonlinear, mechanistic, global circulation model show that the upper mesospheric jet is greatly overestimated and also the position with respect to latitude and height does not correspond to observations. Apart from that also the winter wind reversal in the mesopause region, evoked by breaking gravity waves (GWs), is located too low around 80km, but is observed to be usually around 100 km. These discrepancies are planned to be eliminated by modifying the distribution of GW amplitudes driving the GW parameterization. This distribution is currently based on potential GW energy data derived from GPS radio occultation measurements and has to be replaced by a distribution based on momentum flux estimates applying midfrequency approximation. The results show a weaker mesospheric jet more realistically tilted towards lower latitudes with height. Also the meridional circulation extending from the summer to the winter pole decelerates and less GWs are propagating into the mesosphere. By additionally varying the GW amplitudes in magnitude and time, the wind reversal is shifted upwards and the mesospheric jet is slowed down.Simulationen der Zirkulation der mittleren AtmosphĂ€re wĂ€hrend des nordhemisphĂ€rischen Winters unter Verwendung eines nicht-linearen mechanistischen globalen Zirkulationsmodells ergaben beim Vergleich mit Messungen, dass der simulierte, mesosphĂ€rische Jet stark ĂŒberschĂ€tzt wird und dessen Position von den Beobachtungen abweicht. Die in der Mesopausenregion einsetzende Windumkehr, hervorgerufen durch brechende Schwerewellen, befindet sich in etwa 80 km anstatt in 100 km. Diese Diskrepanzen sollen eliminiert werden. HierfĂŒr wird die Verteilung der Schwerewellenamplituden, die die Schwerewellenparametrisierung innerhalb des Modells antreibt, am oberen Rand der TroposphĂ€re modifiziert. Diese basiert derzeit auf global beobachteten, zonal gemittelten Daten der potentiellen Energie von Schwerewellen abgeleitet aus GPS Radiookkultationsmessungen und soll durch eine auf ImpulsflĂŒssen basierende Verteilung ersetzt werden. Das Modellexperiment zeigt, dass der mesosphĂ€rische Jet mit der Höhe in Richtung niedriger Breiten geneigt ist und abgebremst wird. Zudem schwĂ€cht die Meridionalzirkulation vom Sommer- zum Winterpol leicht ab und weniger Schwerewellen dringen bis in die MesosphĂ€re vor. ZusĂ€tzlich wird durch zeitliche und unterschiedlich starke Variation der Schwerewellenamplitude die Windumkehr verlagert und der mesosphĂ€rische Jet abgebremst

    Long-period oscillations derived from mesosphere/lower thermosphere meteor radar temperature measurements

    No full text
    Using measurements, derived from a meteor radar in Collm (51.3°N, 13°E), the mesopause region is analyzed with respect to the temperature distribution at an altitude of 90 km over a period of 10 years. The analyzed period lasts from 2005 till 2013. Based on these measurements, the typical temperature seasonal cycle of the mesopause region can be observed. The temperature reaches its minimum of about 130 K in summer and its maximum of about 220 K in winter. At this altitude, also strong day-today- fluctuations of up to 35 K exist, which are probably partly induced by planetary waves. Shorter-period oscillations with a period between 2 and 6 days have maximum amplitudes during summer, while longer-period oscillations with a period between 7 and 20 days maximize during winter. During the measurement period the amplitudes of oscillations with periods between 4 and 6 days, which may be attributed to the quasi-5-day-wave, increase with time.Auf der Grundlage von Messungen eines Meteorradars in Collm (51.3°N, 13°E), die in einer Höhe von 90 km erfolgten, was in etwa der Mesopause entspricht, wird die Temperatur hinsichtlich ihres Jahresganges und insbesondere ihrer Variationen in einem Messzeitraum von 10 Jahren analysiert. Der analysierte Zeitraum erstreckt sich von 2005 bis 2013. Anhand der Daten kann man den typischen Jahresgang der Temperatur in der Mesopausenregion erkennen. Die Temperatur erreicht im Sommer das Minimum bei etwa 130 K und im Winter das Maximum bei etwa 220 K. Zudem treten starke Tag-zu-Tag-Fluktuationen auf, die im Maximum 35 K betragen. Diese werden vermutlich durch planetare WellenaktivitĂ€t der AtmosphĂ€re hervorgerufen. Hierbei spielen im Sommer die kurzwelligen und im Winter die langwelligen Oszillationen, letztere mit Perioden grĂ¶ĂŸer 7 Tage, die wesentliche Rolle. Ferner sind innerhalb des Messzeitraums zunehmende Amplituden von Oszillationen mit Perioden zwischen 4 und 6 Tagen (quasi 5-Tage-Welle) zu erkennen

    Impact of local gravity wave forcing in the lower stratosphere on the polar vortex stability: effect of longitudinal displacement

    Get PDF
    The effects of gravity wave (GW) breaking hotspots in the lower stratosphere, especially the role of their longitudinal distribution, are evaluated through a sensitivity study by using a simplified middle atmosphere circulation model. For the position of the local GW hotspot, we first selected a fixed latitude range between 37.5 and 62.5∘ N and a longitude range from 112.5 to 168.75∘ E, as well as an altitude range between 18 and 30 km. This confined GW hotspot was then shifted in longitude by 45∘ steps, so that we created eight artificial GW hotspots in total. Strongly dependent on the location of the respective GW hotspot with regard to the phase of the stationary planetary wave of wavenumber 1 (SPW 1) generated in the model, the local GW forcing may interfere constructively or destructively with the modeled SPW 1. GW hotspots, which are located in North America near the Rocky Mountains, lead to an increase in the SPW 1 amplitude and EP flux, while hotspots located near the Caucasus, the Himalayas or the Scandinavian region lead to a decrease in these parameters. Thus, the polar vortex is less (Caucasus and Himalayan hotspots) or more weakened (Rocky Mountains hotspot) by the prevailing SPW activity. Because the local GW forcing generally suppresses wave propagation at midlatitudes, the SPWs 1 propagate into the polar region, where the refractive index turned to positive values for the majority of the artificial GW hotspots. An additional source of SPW 1 may be local instabilities indicated by the reversal in the meridional potential vorticity gradient in the polar region in connection with a positive EP divergence. In most cases, the SPWs 1 are breaking in the polar region and maintain the deceleration and, thus, the weakening of the polar vortex. While the SPWs 1 that form when the GW hotspots are located above North America propagate through the polar region into the middle atmosphere, the SPWs 1 in the remaining GW hotspot simulations were not able to propagate further upwards because of a negative refractive index above the positive refractive index anomaly in the polar region. GW hotspots, which are located near the Himalayas, influence the mesosphere–lower thermosphere region because of possible local instabilities in the lower mesosphere generating additional SPWs 1, which propagate upwards into the mesosphere.Deutsche Forschungsgemeinschaft | Ref. JA836/32-
    corecore