26 research outputs found

    Raman spectroscopy in head and neck cancer

    Get PDF
    In recent years there has been much interest in the use of optical diagnostics in cancer detection. Early diagnosis of cancer affords early intervention and greatest chance of cure. Raman spectroscopy is based on the interaction of photons with the target material producing a highly detailed biochemical 'fingerprint' of the sample. It can be appreciated that such a sensitive biochemical detection system could confer diagnostic benefit in a clinical setting. Raman has been used successfully in key health areas such as cardiovascular diseases, and dental care but there is a paucity of literature on Raman spectroscopy in Head and Neck cancer. Following the introduction of health care targets for cancer, and with an ever-aging population the need for rapid cancer detection has never been greater. Raman spectroscopy could confer great patient benefit with early, rapid and accurate diagnosis. This technique is almost labour free without the need for sample preparation. It could reduce the need for whole pathological specimen examination, in theatre it could help to determine margin status, and finally peripheral blood diagnosis may be an achievable target

    Characterization of Vibrio eltor Typing Phages: Properties of the Eltor Phage e4

    No full text
    Biophysical characteristics of Vibrio eltor phage e4, a key phage in the Vibrio cholerae typing scheme were studied. This icosahedral phage was found to contain 12 structural polypeptides with mol. wt. ranging from 25 000 to 120000. One of these polypeptides of mol. wt. 50000 accounted for most of the structural proteins present and was probably the major phage capsid protein. The phage genome comprised a single linear, doublestranded DNA molecule, 69.2 kbp in length (45.6 × 106 mol. wt.) as determined by electron microscopy and restriction fragment analyses. The G + C content was 34.6~. Electron microscopy data indicated that unlike the DNAs of other cholera phages, phage e4 DNA is not circularly permuted. Adsorption under normal conditions was biphasic with rate constants of 1.02 x 10-9/ml/min up to 60~ adsorption and 3 x 10-1°/ml/min thereafter. Intracellular phage multiplication was characterized by a latent period of 27 min. The burst size was approximately 100 phage particles per infected cel

    Evaluation of new porous beta-tri-calcium phosphate ceramic as bone substitute in goat model

    No full text
    The present study was carried out to evaluate the porous beta-tri-calcium phosphate (TCP) (prepared by aqueous solution combustion technique) as bone substitute and compared with normal healing in 12 adult Black. Bengal goats on the basis of clinical and radiographic findings, histological studies, oxytetracycline labeling, angiography studies (on day 90). Bone defects created in the diaphysis of radius were left unfilled in control animals (group I); while in treated (group II) animals the defects were filled with porous TCP blocks. The three months study showed no marked acute inflammatory reactions in all animals, wound healing was uneventful and the implants were clinically stable in the bone. Radiological studies showed presence of unabsorbed implants which acted as a scaffold for new bone growth across the defect whereas in control animals the defect was more or less same except that the newly formed bony tissue was less organized. Histological section showed moderately differentiated lamellar bone in the cortical part with presence of woven bone at peripheral cortex whereas control animals showed moderate fibro-collagenisation and good amount of marrow material, fat cells and blood vessels. Oxytetracycline labeling study showed crossing over of new bony trabeculae along with presence of resorption cavities within the new osteoid tissues whereas in group I, the process of new bone formation was active from both the ends; the defect site appeared as a homogenous non-fluorescent area. Angiogram of the animals in control showed uniform angiogenesis in the defect site with establishment of trans transplant angiogenesis, whereas in group II there was complete trans transplant shunting of blood vessels communication. The results of this study pointed out that the porous TCP promoted extensive bone formation over the entire extension of the defect in comparison to control group, thus conforming their biological osteoconductive property. (c) 2007 Elsevier B.V. All rights reserved

    Deep Layer Kernel Sparse Representation Network for the Detection of Heart Valve Ailments from the Time-Frequency Representation of PCG Recordings

    No full text
    The heart valve ailments (HVAs) are due to the defects in the valves of the heart and if untreated may cause heart failure, clots, and even sudden cardiac death. Automated early detection of HVAs is necessary in the hospitals for proper diagnosis of pathological cases, to provide timely treatment, and to reduce the mortality rate. The heart valve abnormalities will alter the heart sound and murmurs which can be faithfully captured by phonocardiogram (PCG) recordings. In this paper, a time-frequency based deep layer kernel sparse representation network (DLKSRN) is proposed for the detection of various HVAs using PCG signals. Spline kernel-based Chirplet transform (SCT) is used to evaluate the time-frequency representation of PCG recording, and the features like L1-norm (LN), sample entropy (SEN), and permutation entropy (PEN) are extracted from the different frequency components of the time-frequency representation of PCG recording. The DLKSRN formulated using the hidden layers of extreme learning machine- (ELM-) autoencoders and kernel sparse representation (KSR) is used for the classification of PCG recordings as normal, and pathology cases such as mitral valve prolapse (MVP), mitral regurgitation (MR), aortic stenosis (AS), and mitral stenosis (MS). The proposed approach has been evaluated using PCG recordings from both public and private databases, and the results demonstrated that an average sensitivity of 100%, 97.51%, 99.00%, 98.72%, and 99.13% are obtained for normal, MVP, MR, AS, and MS cases using the hold-out cross-validation (CV) method. The proposed approach is applicable for the Internet of Things- (IoT-) driven smart healthcare system for the accurate detection of HVAs

    In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds

    No full text
    Pure hydroxyapatite (HAp) and a biphasic calcium phosphate [containing 90% of beta-tri-calcium phosphate (beta-TCP) and 10% HAp] were tailored through an aqueous solution combustion synthesis. Porous struts were prepared using all the powders along with bioglass, a known bioactive material, and subsequently characterized. Sterilized struts were implanted to the lateral side of radius bone of 24 black Bengal goats of either sex, in which a blank hole was left unfilled in a group of six specimens to act as control. The bone formation response of the three implanting materials in vivo has been studied using scanning electron microscope and histological analysis in contrast with positive controls. Push-out tests were used to assess the mechanical strength at the bone-biomaterial interface. It was observed that interfacial response was strongly dependent on combinations of different physical and chemical parameters. The surface of beta-TCP exhibited similar characteristics of bone and was distinct from those of intervening apatite layer of bioglass. Lower bone ingrowth and reduced strength was observed with HAp compared to beta-TCP/bioglass-based implants. Bone formation response of the Ca-P material varied according to the composition of the implanting material, which could be tailored through this novel synthesis. (C) 2007 Wiley Periodicals, Inc

    Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration

    No full text
    In recent years the potential application of nanocomposite biomaterials in tissue engineering field is gaining importance because of the combined features of all the individual components. A bottom-up approach is acquired in this study to recreate the bone microenvironment. The regenerated silk protein fibroin obtained from nonmulberry tropical tasar Antheraea mylitta species is reinforced with functionalized Carbon Nano Fiber (CNF) and the composite sponges are fabricated using facile green aqueous based method. Biophysical investigations show that the matrices are porous and simultaneously bioactive when incubated in simulated body fluid. The reinforcement of CNF influences the mechanical property of the matrices by increasing the compressive modulus up to 46.54 MPa (∼4.3 times of the control fibroin sponge) in hydrated state, which is higher than the minimum required human trabecular bone modulus (10 MPa). The composite matrices are found to be non-hemolytic as well as cytocompatible. The growth factors (BMP-2 and TGF-β1) loaded composites show sustained release kinetics and an early attachment, growth, proliferation and osteogenic differentiation of the osteoblasts and mesenchymal stem cells. The matrices are immunocompatible as evidenced by minimal release of pro-inflammatory cytokines both in vitro and in vivo. In order to support the in vitro study, in vivo analysis of new bone formation within the implants is performed through radiological, μ-CT, fluorochrome labeling and histological analysis, which show statistically better bone formation on growth factor loaded composite scaffolds. The study clearly shows the potential attributes of these composite matrices as an extra cellular matrix for supporting successful osseointegration process

    Chemically Reduced Graphene Oxide for Ammonia Detection at Room Temperature

    No full text
    Chemically reduced graphene oxide (RGO) has recently attracted growing interest in the area of chemical sensors because of its high electrical conductivity and chemically active defect sites. This paper reports the synthesis of chemically reduced GO using NaBH<sub>4</sub> and its performance for ammonia detection at room temperature. The sensing layer was synthesized on a ceramic substrate containing platinum electrodes. The effect of the reduction time of graphene oxide (GO) was explored to optimize the response, recovery, and response time. The RGO film was characterized electrically and also with atomic force microscopy and X-ray photoelectron spectroscopy. The sensor response was found to lie between 5.5% at 200 ppm (parts per million) and 23% at 2800 ppm of ammonia, and also resistance recovered quickly without any application of heat (for lower concentrations of ammonia). The sensor was exposed to different vapors and found to be selective toward ammonia. We believe such chemically reduced GO could potentially be used to manufacture a new generation of low-power portable ammonia sensors

    Detection of atrial fibrillation from single lead ECG signal using multirate cosine filter bank and deep neural network

    No full text
    Atrial fibrillation (AF) is a cardiac arrhythmia which is characterized based on the irregsular beating of atria, resulting in, the abnormal atrial patterns that are observed in the electrocardiogram (ECG) signal. The early detection of this pathology is very helpful for minimizing the chances of stroke, other heart-related disorders, and coronary artery diseases. This paper proposes a novel method for the detection of AF pathology based on the analysis of the ECG signal. The method adopts a multi-rate cosine filter bank architecture for the evaluation of coefficients from the ECG signal at different subbands, in turn, the Fractional norm (FN) feature is evaluated from the extracted coefficients at each subband. Then, the AF detection is carried out using a deep learning approach known as the Hierarchical Extreme Learning Machine (H-ELM) from the FN features. The proposed method is evaluated by considering normal and AF pathological ECG signals from public databases. The experimental results reveal that the proposed multi-rate cosine filter bank based on FN features is effective for the detection of AF pathology with an accuracy, sensitivity and specificity values of 99.40%, 98.77%, and 100%, respectively. The performance of the proposed diagnostic features of the ECG signal is compared with other existing features for the detection of AF. The low-frequency subband FN features found to be more significant with a difference of the mean values as 0.69 between normal and AF classes

    Simple Growth of Faceted Au–ZnO Hetero-nanostructures on Silicon Substrates (Nanowires and Triangular Nanoflakes): A Shape and Defect Driven Enhanced Photocatalytic Performance under Visible Light

    No full text
    A simple single-step chemical vapor deposition (CVD) method has been used to grow the faceted Au–ZnO hetero-nanostructures (HNs) either with nanowires (NWs) or with triangular nanoflakes (TNFs) on crystalline silicon wafers with varying oxygen defect density in ZnO nanostructures. This work reports on the use of these nanostructures <i>on</i> substrates for photodegradation of rhodamine B (RhB) dyes and phenol under the visible light illumination. The photoluminescence measurements showed a substantial enhancement in the ratio of defect emission to band-edge emission for TNF (ratio ≈ 7) compared to NW structures (ratio ≤ 0.4), attributed to the presence of more oxygen defects in TNF sample. The TNF structures showed 1 order of magnitude enhancement in photocurrent density and an order of magnitude less charge-transfer resistance (<i>R</i><sub>ct</sub>) compared to NWs resulting high-performance photocatalytic activity. The TNFs show enhanced photocatalytic performance compared to NWs. The observed rate constant for RhB degradation with TNF samples is 0.0305 min<sup>–1</sup>, which is ≈5.3 times higher compared to NWs case with 0.0058 min<sup>–1</sup>. A comparison has been made with bulk ZnO powders and ZnO nanostructures without Au to deduce the effect of plasmonic nanoparticles (Au) and the shape of ZnO in photocatalytic performance. The results reveal the enhanced photocatalytic capability for the triangular nanoflakes of ZnO toward RhB degradation with good reusability that can be attracted for practical applications
    corecore