233 research outputs found
Rice husk ash incorporation in calcium aluminate cement concrete : life cycle assessment, hydration and strength development
In this research effect of rice husk ash (RHA), as silicate impurities, on the hydration reaction and mechanical strength of calcium aluminate cement (CAC) concrete, as one of the most important non-Portland cements, was investigated. Furthermore, in order to evaluate the environmental performance of mixtures, a lifecycle assessment was performed using the recipe midpoint and endpoint method. Compressive and tensile strength tests were conducted at the ages of 7, 28, and 90 days on specimens containing different contents of RHA (0, 2.5, 5, 7.5, and 10%) substituting for cement at the water-cement ratio of 0.4. Moreover, in order to calculate the hydration reaction of the specimens, thermogravimetric analysis (TGA) was performed at a rate of 10â°C/min to up to
1000â°C. The results revealed that the use of rice husk ash as a partial replacement at a concentration of 5% could reduce CO2 emission and ozone depletion by 18.75% and 31%, respectively. The findings indicate that, at 90 days, the mechanical strength of the mixes containing RHA were higher than
those of the control mix, with the maximum improvement occurring at the substitution percentage of 5%. In accordance with TGA analysis the substitution of 5% RHA in CAC concrete led to a higher hydration level, which in turn improved the mechanical properties relative to the specimen without RHA at 90 days
Localised web bearing behaviour of cold-formed austenitic stainless-steel channels : review of design rules and new insight under interior loading
Stainless steels are modern high-performance construction materials exhibiting excellent corrosion resistance, recyclability, ductility, and durability which make them appealing to use in the construction industry. However, when used as structural sections, they are subjected to localised failure in the web. This study aims to examine the structural behaviour of cold-formed low-carbon content standard austenitic 304L and 316L stainless steel channels under localised interior bearing loads. The results of 21 tests on unlipped channels with different cross-section sizes and thicknesses are presented. A nonlinear quasi-static Finite Element (FE) model is then developed. The FE model is validated against experimental test results and demonstrated good agreement in terms of bearing strength and failure modes. In addition, the experimental and FE results are used to compare the results against the results predicted in accordance with the American specification SEI/ASCE 8:2002 and European Standard EN 1993-1-4:2006. It is found that the current design equations are unreliable and too unconservative to use for cold-formed austenitic stainless steel unlipped channels, especially when compared to SEI/ASCE 8:2002, as much as 41%
Footprint of construction errors on the structural damages
The majority of structural failures are attributable to errors in construction. This problem exists in all countries, but it is more frequent in developing communities. This study focuses on construction errors of structures in Tehran, the capital city of Iran. In this study, eighty-eight buildings have been investigated during the construction phase. These buildings have been categorized into ten types and have been distributed in twenty-two suburbs. Results showed that the buildings of Tehran can suffer from at least forty-nine major construction problems. In addition, for the first time, this research has introduced the following three terms in relation to prioritizing of construction errors: Relative Importance Factor (RIF), Priority Index (PI) and Structural Importance Index (SII). As a part of the conclusions, the results showed one hundred percent of investigated buildings are affected dramatically by the âuse of untrained workersâ and âlack of sampling or wrong samplingâ too. In this regard, the RIF and PI of each âLack of sampling or wrong samplingâ and âuse of untrained workersâ are 100 and 1, respectively. Also, suburb 3 has the best construction conditions while suburb 10 has the worst
LES analysis on the effects of fire source asymmetry on enhanced wind by fire
Investigation of aerodynamic characteristics of wind enhanced by bushfires is of great significance due to their destructive impacts on buildings located in bushfire-prone areas. Despite the abundance of studies in the fire-wind interaction domain, there have been limited studies concerning the effects of fire on wind aerodynamics. Fire source shape is one of the main factors affecting enhanced wind by fire. This study reports on the effects of fire source asymmetry on aerodynamic changes of wind by fire using a large eddy simulation analysis based on fireFoam solver of OpenFOAM platform. Wind aerodynamic analysis was performed by implementing a module to the solver to extract the corresponding components of fire-induced pressure gradient and acceleration. The results revealed that deviation from fire source symmetry results in asymmetric behaviour of counter-rotating vortices where the maximum cross-sectional wind enhancement occurs. Moreover, the concept of the first-moment area was used to quantify the level of fire source deviation from symmetry and it was shown that the higher first-moment area (about the equivalent symmetry axis) corresponds to a higher deviation from symmetry which delays the realignment of counter-rotating vortices toward the horizontal vortex line
Numerical analysis of axial cyclic behavior of FRP retrofitted CHS joints
This paper aims to numerically investigate the cyclic behavior of retrofitted and non-retrofitted circular hollow section (CHS) T-joints under axial loading. Different joints with varying ratios of brace to chord radius are studied. The effects of welding process on buckling instability of the joints in compression and the plastic failure in tension are considered. The finite element method is employed for numerical analysis, and the SAC protocol is considered as cyclic loading scheme. The CHS joints are retrofitted with different numbers of Fiber Reinforced Polymer (FRP) layers with varying orientation. The results show that the welding process significantly increases the plastic failure potential. The chord ovalization is the dominant common buckling mode under the compression load. However, it is possible to increase the energy dissipation of the joints by utilizing
FRP composite through changing the buckling mode to the brace overall buckling
Experimental and numerical investigation of an innovative method for strengthening cold-formed steel profiles in bending throughout finite element modeling and application of neural network based on feature selection method
This study evaluates an innovative reinforcement method for cold-formed steel (CFS) upright sections through finite element assessment as well as prediction of the normalized ultimate load and deflection of the profiles by artificial intelligence (AI) and machine learning (ML) tech-niques. Following the previous experimental studies, several CFS upright profiles with different lengths, thicknesses and reinforcement spacings are modeled and analyzed under flexural loading. The finite element method (FEM) is employed to evaluate the proposed reinforcement method in different upright sections and to provide a valid database for the analytical study. To detect the most influential factor on flexural strength, the âfeature selectionâ method is performed on the FEM results. Then, by using the feature selection method, a hybrid neural network (a combination of multi-layer perceptron algorithm and particle swarm optimization method) is developed for the prediction of normalized ultimate load. The correlation coefficient (R), root mean square error (RMSE), NashâSutcliffe efficiency (NSE), mean absolute error (MAE) and Wilmotâs index of agree-ment (WI) are used as the measure of precision. The results show that the geometrical parameters have almost the same contribution in the flexural capacity and deflection of the specimens. According to the performance evaluation indexes, the best model is detected and optimized by tuning other algorithm parameters. The results indicate that the hybrid neural network can successfully predict the normalized ultimate load and deflection
Shake table testing of standard cold-formed steel storage rack
Fullâscale shake table investigations are strongly required to understand the actual performance of storage racks and to improve the rack design guidelines. This paper presents the results of fullâscale shake table tests on New Zealand standard storage rack frames with twoâbay and twoâlevel to determine the dynamic characteristics of a standard rack structure and to measure the damping of the system. The experimental program was conducted in three phases. First, the identification parameters including the natural frequency and damping of the system were determined through a series of preliminary tests. Then, shake table tests were performed to capture the inelastic response of rack frames under low to medium intensities of ElâCentro ground motion. Finally, the shakeâtable tests were repeated with scaling down the time domain and broader ranges of ground motion intensities to consider the performance of taller rack systems. In addition, a comprehensive discussion on the damping of the system is also provided based on the test results. The performance of the rack frame is described through an extensive set of measurements, including rack displacement, pallet sliding, the acceleration of a concrete block and rack frame and the damping of the system in the downâaisle direction. The results indicate that the standard rack frames are able to endure large inelastic deformations without loss of stability
Buckling behavior of non-retrofitted and FRP-retrofitted steel CHS T-joints
This paper aims to investigate the buckling behavior of circular hollow section (CHS) Tjoints in retrofitted and non-retrofitted states under axial brace compressive loading. For this purpose, two types of analysis are carried out. The first one is evaluating the critical buckling load in various tubular joints, and the other one is investigating the post-buckling behavior after each buckling mode. More than 180 CHS T-joints with various normalized geometric properties were numerically modeled in non-retrofitted state to compute their governing buckling mode, i.e., chord ovalization, brace local, or global buckling. Then three joints with different buckling modes were selected to be retrofitted by fiber-reinforced polymer (FRP) patches to illustrate the improving effect of the FRP wrapping on the post-buckling performance of the retrofitted joints. In addition, FRP composite failures were investigated. The results indicate that the FRP retrofitting is able to prevent the brace local buckling, and that matrix failure is the most common composite failure in the retrofitted joints
Integration of TLS-derived Bridge Information Modeling (BrIM) with a Decision Support System (DSS) for digital twinning and asset management of bridge infrastructures
In the current modern era of information and technology, the concept of Building Information Modeling (BIM), has made revolutionary changes in different aspects of engineering design, construction, monitoring, and management of infrastructure assets, especially bridges. In the field of bridge engineering, Bridge Information Modeling (BrIM), as a specific form of BIM, includes digital twinning of bridge assets associated with geometrical information and non-geometrical inspection data. BrIM has demonstrated tremendous potential in substituting traditional paper-based documentation and handwritten reports with digital bridge documentation/trans-formation, allowing professionals and managers to execute bridge management more efficiently and effectively. However, concerns remain about the quality of the acquired data in BrIM development, as well as lack of research on utilizing these information for remedial actions/decisions in a reliable Bridge Management System (BMS), which are mainly reliant on the knowledge and experience of the involved inspectors, or asset managers, and are susceptible to a certain degree of subjectivity. To address these concerns, this research paper presents a comprehensive methodology as an advanced asset management system that employs BrIM data to improve and facilitate the BMS. This innovative BMS is comprised of a precise Terrestrial Laser Scan (TLS)-derived BrIM as a qualitative digital replica of the existing bridge, incorporating geometrical and non-geometrical information of the bridge elements, and equipped with a requirement-driven framework in a redeveloped condition assessment model for priority ranking of bridge elements based on their health condition. In another step ahead, the proposed BMS integrates a Decision Support System (DSS) to score the feasible remedial strategies and provide more objective decisions for optimal budget allocation and remedial planning. This methodology was further implemented via a developed BrIM-oriented BMS plugin and validated through a real case study on the Werrington Bridge, a cable-stayed bridge in New South Wales, Australia. The finding of this research confirms the reliability of BrIM-oriented BMS implementation and the integration of proposed DSS for priority ranking of bridge elements that require more attention based on their structural importance and material vulnerability, as well as optimizing remedial actions in a practical way while preserving the bridge in a safe and healthy condition
Applicability-compatibility analysis of PMBOK seventh edition from the perspective of the construction industry distinctive peculiarities
Project management standards, like PMBOK, have had a considerable role in developing this field of knowledge and promoting it as a professional expertise in project-oriented industries, such as the construction industry. The latest version of PMBOK, seventh editionâ2021, has been released with substantial changes, and the conventional process-based system has been converted to a performance-based approach. This study aimed to investigate the recent edition of PMBOK, to explore its application and adaptation regarding the specific characteristics of the construction industry. For this purpose, utilizing a hybrid methodology of text mining and survey method, at first, the content of the text was analyzed by software in combination with expertsâ opinions. In a
parallel survey, the distinctive attributes of the construction industry were investigated, and in the next step, the way that this sector can benefit from the emerging framework was examined. The results show the construction industry has special peculiarities in the form of four different project types with specific phases in typical lifecycle and reveal the potential applicability of performance domains in the construction projects and the compatibility of project management principles. This study is one of the first attempts to review the novel presented standard of PMBOK seventh edition and contributes to the present knowledge by analyzing the construction industry in relation to this
issue
- âŠ