1,554 research outputs found
Amorphous ice: Stepwise formation of very-high-density amorphous ice from low-density amorphous ice at 125 K
On compressing low-density amorphous ice (LDA) at 125 K up to 1.6 GPa, two distinct density steps accompanied by heat evolution are observable in pressure-density curves. Samples recovered to 77 K and 1 bar after the first and second steps show the x-ray diffraction pattern of high-density amorphous ice (HDA) and very HDA (VHDA), respectively. The compression of the once formed HDA takes place linearly in density up to 0.95 GPa, where nonlinear densification and HDA -> VHDA conversion is initiated. This implies a stepwise formation process LDA -> HDA -> VHDA at 125 K, which is to the best of our knowledge the first observation of a stepwise amorphous-amorphous-amorphous transformation sequence. We infer that the relation of HDA and VHDA is very similar to the relation between LDA and HDA except for a higher activation barrier between the former. We discuss the two options of thermodynamic versus kinetic origin of the phenomenon
Precision covalent organic frameworks for surface nucleation control
Unwanted accumulation of ice and lime scale crystals on surfaces is a long-standing challenge with major economic and sustainability implications. Passive inhibition of icing and scaling by liquid-repellent surfaces are often inadequate, susceptible to surface failure under harsh conditions, and unsuitable for long-term/real-life usages. Such surfaces often require a multiplicity of additional features such as optical transparency, robust impact resistance, and ability to prevent contamination from low surface energy liquids. Unfortunately, most promising advances have relied on using perfluoro compounds, which are bio-persistent and/or highly toxic. Here it is shown that organic, reticular mesoporous structures, covalent organic frameworks (COFs), may offer a solution. By exploiting simple and scalable synthesis of defect-free COFs and rational post-synthetic functionalization, nanocoatings with precision nanoporosity (morphology) are prepared that can inhibit nucleation at the molecular level without compromising the related contamination prevention and robustness. The results offer a simple strategy to exploit the nanoconfinement effect, which remarkably delays the nucleation of ice and scale formation on surfaces. Ice nucleation is suppressed down to −28 °C, scale formation is avoided for >2 weeks in supersaturated conditions, and jets of organic solvents impacting at Weber numbers >105 are resisted with surfaces that also offer optical transparency (>92%)
Microfield distributions in strongly coupled two-component plasmas
The electric microfield distribution at charged particles is studied for
two-component electron-ion plasmas using molecular dynamics simulation and
theoretical models. The particles are treated within classical statistical
mechanics using an electron-ion Coulomb potential regularized at distances less
than the de Broglie length to take into account the quantum-diffraction
effects. The potential-of-mean-force (PMF) approximation is deduced from a
canonical ensemble formulation. The resulting probability density of the
electric microfield satisfies exactly the second-moment sum rule without the
use of adjustable parameters. The correlation functions between the charged
radiator and the plasma ions and electrons are calculated using molecular
dynamics simulations and the hypernetted-chain approximation for a
two-component plasma. It is shown that the agreement between the theoretical
models for the microfield distributions and the simulations is quite good in
general.Comment: 18 figures. Submitted to Phys. Rev.
Complex nanostructures in diamond
Meteoritic diamonds and synthesized diamond-related materials contain a wide variety of complex nanostructures. This Comment highlights and classifies this structural complexity by a systematic hierarchical approach, and discusses the perspectives on nanostructure and properties engineering of diamond-related materials
The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction
The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions and means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a palaeoenvironmental reconstruction of the mid-Piacenzian (~3 Ma) containing data for palaeogeography, land and sea-ice, sea-surface temperature, vegetation, soils and lakes. Our retrodicted palaeogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project, Phase 2 (PlioMIP2) experiments
Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and pCO2
Considered one of the most significant climate reorganizations of the Cenozoic period, the Eocene–Oligocene Transition (EOT; ca. 34.44–33.65) is characterized by global cooling and the first major glacial advance on Antarctica. In the southern high latitudes, the EOT cooling is primarily recorded in the marine realm, and its extent and effect on the terrestrial climate and vegetation are poorly documented. Here, we present new, well-dated, continuous, high-resolution palynological (sporomorph) data and quantitative sporomorph-based climate estimates recovered from the East Tasman Plateau (ODP Site 1172) to reconstruct climate and vegetation dynamics from the late Eocene (37.97 Ma) to the early Oligocene (33.06 Ma). Our results indicate three major climate transitions and four vegetation communities occupying Tasmania under different precipitation and temperature regimes: (i) a warm-temperate Nothofagus–Podocarpaceae-dominated rainforest with paratropical elements from 37.97 to 37.52 Ma; (ii) a cool-temperate Nothofagus-dominated rainforest with secondary Podocarpaceae rapidly expanding and taking over regions previously occupied by the warmer taxa between 37.306 and 35.60 Ma; (iii) fluctuation between warm-temperate–paratropical taxa and cool temperate forest from 35.50 to 34.49 Ma, followed by a cool phase across the EOT (34.30–33.82 Ma); and (iv) a post-EOT (earliest Oligocene) recovery characterized by a warm-temperate forest association from 33.55 to 33.06 Ma. Coincident with changes in the stratification of water masses and sequestration of carbon from surface water in the Southern Ocean, our sporomorph-based temperature estimates between 37.52 and 35.60 Ma (phase ii) showed 2–3 ∘C terrestrial cooling. The unusual fluctuation between warm and cold temperate forest between 35.50 to 34.59 Ma is suggested to be linked to the initial deepening of the Tasmanian Gateway, allowing eastern Tasmania to come under the influence of warm water associated with the proto-Leeuwin Current (PLC). Further to the above, our terrestrial data show the mean annual temperature declining by about 2 ∘C across the EOT before recovering in the earliest Oligocene. This phenomenon is synchronous with regional and global cooling during the EOT and linked to declining pCO2. However, the earliest Oligocene climate rebound along eastern Tasmania is linked to a transient recovery of atmospheric pCO2 and sustained deepening of the Tasmanian Gateway, promoting PLC throughflow. The three main climate transitional events across the studied interval (late Eocene–earliest Oligocene) in the Tasmanian Gateway region suggest that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation dynamics; a series of regional and global events, including a change in the stratification of water masses, sequestration of carbon from surface waters, and changes in pCO2, may have also played vital roles
Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region controlled by changes in ocean currents and pCO2
Considered as one of the most significant climate reorganisations of the Cenozoic period, the Eocene-Oligocene Transition (EOT; ca. 34.44–33.65) is characterised by global cooling and the first major glacial advance on Antarctica. While in the southern high-latitudes, the EOT cooling is primarily recorded in the marine realm, the extent and effect on terrestrial climate and vegetation is poorly documented. Here, we present a new, well-dated, continuous, high-resolution palynological (sporomorph) data and quantitative sporomorph-based climate estimates recovered from the East Tasman Plateau (ODP Site 1172) to reconstruct climate and vegetation dynamics from the late Eocene (37.97 Ma) to early Oligocene (33.06 Ma). Our results indicate three major climate transitions and four vegetation communities occupying Tasmania under different precipitation and temperature regimes: (i) a warm-temperate Nothofagus-Podocarpaceae dominated rainforest with paratropical elements from 37.97–37.52 Ma; (ii) cool-temperate Nothofagus dominated rainforest with secondary Podocarpaceae rapidly expanding and taking over regions previously occupied by the warmer taxa between 37.306–35.60 Ma; (iii) fluctuation between warm temperate – paratropical taxa and cool temperate forest from 35.50–34.49 Ma, followed by a cool phase across the EOT (34.30–33.82 Ma); (iv) post-EOT (earliest Oligocene) recovery characterised by a warm-temperate forest association from 33.55–33.06 Ma. Coincident with changes in stratification of water masses and sequestration of carbon from surface water in the Southern Ocean, our sporomorph-based temperature estimates between 37.52 Ma and 35.60 Ma (phase ii) showed 2–3 °C terrestrial cooling. The unusual fluctuation between warm and cold temperate forest between 35.50 to 34.59 Ma is suggested to be linked to the initial deepening of the Tasmanian Gateway allowing eastern Tasmania to come under the influence of warm water associated with the proto-Leeuwin Current (PLC). Further to the above, our terrestrial data show mean annual temperature declining by about 2 °C across the EOT before recovering in the earliest Oligocene. This phenomenon is synchronous with regional and global cooling during the EOT and linked to declining pCO2. However, the earliest Oligocene climate rebound along eastern Tasmania is linked to transient recovery of atmospheric pCO2 and sustained deepening of the Tasmanian Gateway, promoting PLC throughflow. The three main climate transitional events across the studied interval (late Eocene–earliest Oligocene) in the Tasmanian Gateway region suggest that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation dynamics, but a series of regional and global events, including a change in stratification of water masses, sequestration of carbon from surface waters, and changes in pCO2 may have played vital roles
- …