197 research outputs found
Does an atom interferometer test the gravitational redshift at the Compton frequency ?
Atom interferometers allow the measurement of the acceleration of freely
falling atoms with respect to an experimental platform at rest on Earth's
surface. Such experiments have been used to test the universality of free fall
by comparing the acceleration of the atoms to that of a classical freely
falling object. In a recent paper, M\"uller, Peters and Chu [Nature {\bf 463},
926-929 (2010)] argued that atom interferometers also provide a very accurate
test of the gravitational redshift when considering the atom as a clock
operating at the Compton frequency associated with the rest mass. We analyze
this claim in the frame of general relativity and of different alternative
theories. We show that the difference of "Compton phases" between the two paths
of the interferometer is actually zero in a large class of theories, including
general relativity, all metric theories of gravity, most non-metric theories
and most theoretical frameworks used to interpret the violations of the
equivalence principle. Therefore, in most plausible theoretical frameworks,
there is no redshift effect and atom interferometers only test the universality
of free fall. We also show that frameworks in which atom interferometers would
test the redshift pose serious problems, such as (i) violation of the Schiff
conjecture, (ii) violation of the Feynman path integral formulation of quantum
mechanics and of the principle of least action for matter waves, (iii)
violation of energy conservation, and more generally (iv) violation of the
particle-wave duality in quantum mechanics. Standard quantum mechanics is no
longer valid in such frameworks, so that a consistent interpretation of the
experiment would require an alternative formulation of quantum mechanics. As
such an alternative has not been proposed to date, we conclude that the
interpretation of atom interferometers as testing the gravitational redshift is
unsound.Comment: 26 pages. Modified version to appear in Classical and Quantum Gravit
Atom interferometry and the Einstein equivalence principle
The computation of the phase shift in a symmetric atom interferometer in the
presence of a gravitational field is reviewed. The difference of action-phase
integrals between the two paths of the interferometer is zero for any
Lagrangian which is at most quadratic in position and velocity. We emphasize
that in a large class of theories of gravity the atom interferometer permits a
test of the weak version of the equivalence principle (or universality of free
fall) by comparing the acceleration of atoms with that of ordinary bodies, but
is insensitive to that aspect of the equivalence principle known as the
gravitational redshift or universality of clock rates.Comment: 5 pages, to appear in the proceedings of the "46th Rencontres de
Moriond and GPhyS Colloquium on Gravitational Waves and Experimental
Gravity", la Thuile, March 20-27, 201
- …